-
Notifications
You must be signed in to change notification settings - Fork 107
/
eval.py
259 lines (230 loc) · 7.89 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import argparse
from model import Tedd1104ModelPL
from dataset import Tedd1104Dataset
import pytorch_lightning as pl
from typing import List, Union
from torch.utils.data import DataLoader
from tabulate import tabulate
from dataset import collate_fn, set_worker_sharing_strategy
from pytorch_lightning import loggers as pl_loggers
def eval_model(
checkpoint_path: str,
test_dirs: List[str],
batch_size: int,
dataloader_num_workers: int = 16,
output_path: str = None,
devices: str = 1,
accelerator: str = "auto",
precision: str = "16",
strategy=None,
report_to: str = "none",
experiment_name: str = "test",
):
"""
Evaluates a trained model on a set of test data.
:param str checkpoint_path: Path to the checkpoint file.
:param List[str] test_dirs: List of directories containing test data.
:param int batch_size: Batch size for the dataloader.
:param int dataloader_num_workers: Number of workers for the dataloader.
:param str output_path: Path to where the results should be saved.
:param str devices: Number of devices to use.
:param str accelerator: Accelerator to use. If 'auto', tries to automatically detect TPU, GPU, CPU or IPU system.
:param str precision: Precision to use. Double precision (64), full precision (32), half precision (16) or bfloat16
precision (bf16). Can be used on CPU, GPU or TPUs.
:param str strategy: Strategy to use for data parallelism. "None" for no data parallelism,
ddp_find_unused_parameters_false for DDP.
:param str report_to: Where to report the results. "none" for no reporting, "tensorboard" for TensorBoard,
"wandb" for W&B.
:param str experiment_name: Name of the experiment for W&B.
"""
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
print(f"Restoring model from {checkpoint_path}")
model = Tedd1104ModelPL.load_from_checkpoint(checkpoint_path=checkpoint_path)
if report_to == "tensorboard":
logger = pl_loggers.TensorBoardLogger(
save_dir=os.path.dirname(checkpoint_path),
name=experiment_name,
)
elif report_to == "wandb":
logger = pl_loggers.WandbLogger(
name=experiment_name,
# id=experiment_name,
# resume=None,
project="TEDD1104",
save_dir=os.path.dirname(checkpoint_path),
)
elif report_to == "none":
logger = None
else:
raise ValueError(
f"Unknown logger: {report_to}. Please use 'tensorboard' or 'wandb'."
)
trainer = pl.Trainer(
devices=devices,
accelerator=accelerator,
precision=precision if precision == "bf16" else int(precision),
strategy=strategy,
# default_root_dir=os.path.join(
# os.path.dirname(os.path.abspath(checkpoint_path)), "trainer_checkpoint"
# ),
)
results: List[List[Union[str, float]]] = []
for test_dir in test_dirs:
dataloader = DataLoader(
Tedd1104Dataset(
dataset_dir=test_dir,
hide_map_prob=0.0,
dropout_images_prob=[0.0, 0.0, 0.0, 0.0, 0.0],
control_mode="keyboard",
token_mask_prob=0.0,
train=False,
transformer_nheads=None
if model.encoder_type == "lstm"
else model.nhead,
),
batch_size=batch_size,
num_workers=dataloader_num_workers,
pin_memory=True,
shuffle=False,
persistent_workers=True,
collate_fn=collate_fn,
worker_init_fn=set_worker_sharing_strategy,
)
print(f"Testing dataset: {os.path.basename(test_dir)}: ")
print()
out = trainer.test(
ckpt_path=checkpoint_path,
model=model,
dataloaders=[dataloader],
verbose=False,
)[0]
results.append(
[
os.path.basename(test_dir),
round(out["Test/acc_k@1_micro"] * 100, 1),
round(out["Test/acc_k@3_micro"] * 100, 1),
round(out["Test/acc_k@1_macro"] * 100, 1),
round(out["Test/acc_k@3_macro"] * 100, 1),
]
)
if logger is not None:
log_metric_dict = {}
for metric_name, metric_value in out.items():
log_metric_dict[
f"{os.path.basename(test_dir)}/{metric_name.split('/')[-1]}"
] = metric_value
logger.log_metrics(log_metric_dict, step=0)
print(
tabulate(
results,
headers=[
"Micro-Accuracy K@1",
"Micro-Accuracy K@3",
"Macro-Accuracy K@1",
"Macro-Accuracy K@3",
],
)
)
if output_path:
with open(output_path, "w+", encoding="utf8") as output_file:
print(
tabulate(
results,
headers=[
"Micro-Accuracy K@1",
"Micro-Accuracy K@3",
"Macro-Accuracy K@1",
"Macro-Accuracy K@3",
],
tablefmt="tsv",
),
file=output_file,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluate a trained model.")
parser.add_argument(
"--checkpoint_path",
type=str,
help="Path to the checkpoint file.",
)
parser.add_argument(
"--test_dirs",
type=str,
nargs="+",
help="List of directories containing test data.",
)
parser.add_argument(
"--batch_size",
type=int,
required=True,
help="Batch size for the dataloader.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=min(os.cpu_count(), 16),
help="Number of workers for the dataloader.",
)
parser.add_argument(
"--output_path",
type=str,
default=None,
help="Path to where the results should be saved.",
)
parser.add_argument(
"--devices",
type=int,
default=1,
help="Number of GPUs/TPUs to use. ",
)
parser.add_argument(
"--accelerator",
type=str,
default="auto",
choices=["auto", "tpu", "gpu", "cpu", "ipu"],
help="Accelerator to use. If 'auto', tries to automatically detect TPU, GPU, CPU or IPU system",
)
parser.add_argument(
"--precision",
type=str,
default="32",
choices=["bf16", "16", "32", "64"],
help=" Double precision (64), full precision (32), "
"half precision (16) or bfloat16 precision (bf16). "
"Can be used on CPU, GPU or TPUs.",
)
parser.add_argument(
"--strategy",
type=str,
default=None,
help="Supports passing different training strategies with aliases (ddp, ddp_spawn, etc)",
)
parser.add_argument(
"--report_to",
type=str,
default="wandb",
choices=["wandb", "tensorboard", "none"],
help="Report to wandb or tensorboard",
)
parser.add_argument(
"--experiment_name",
type=str,
default="test",
help="Experiment name for wandb",
)
args = parser.parse_args()
eval_model(
checkpoint_path=args.checkpoint_path,
test_dirs=args.test_dirs,
batch_size=args.batch_size,
dataloader_num_workers=args.dataloader_num_workers,
output_path=args.output_path,
devices=args.devices,
accelerator=args.accelerator,
precision=args.precision,
strategy=args.strategy,
report_to=args.report_to,
experiment_name=args.experiment_name,
)