diff --git a/tutorials/lesson4-sets/sets.md b/tutorials/lesson4-sets/sets.md index 4216f37dd..00b83beb3 100644 --- a/tutorials/lesson4-sets/sets.md +++ b/tutorials/lesson4-sets/sets.md @@ -348,20 +348,20 @@ themselves. pure def someCoinsExample = Set("ATOM", "ETH", "USDT") // which coins can be bought by swapping a coin from `someCoins` once? - val buyableVia1Swap(someCoins) = + pure def buyableVia1Swap(someCoins) = availableUnorderedPairs .filter(p => p.intersect(someCoins).size() == 1) .flatten() .exclude(someCoins) // which coins can be bought by swapping a coin from `someCoins` exactly twice? - val buyableVia2Swaps(someCoins) = + pure def buyableVia2Swaps(someCoins) = someCoins .buyableVia1Swap() .buyableVia1Swap() // which coins can be bought by swapping a coin from `someCoins` twice? - val buyableVia1or2Swaps(someCoins) = + pure def buyableVia1or2Swaps(someCoins) = buyableVia1Swap(someCoins) .union(buyableVia2Swaps(someCoins)) ``` @@ -447,7 +447,7 @@ echo 'buyableVia1or2Swaps(Set("ATOM"))' | quint -r sets.qnt::sets ```bluespec // which coins can we buy via n swaps when starting from `someCoins` - val buyableNSwaps(someCoins, n) = + pure def buyableNSwaps(someCoins, n) = 1.to(n).fold(someCoins, (prevCoins, i) => buyableVia1Swap(prevCoins)) ``` @@ -530,26 +530,26 @@ echo 'buyableNSwaps(Set("ATOM"), 5)' | quint -r sets.qnt::sets ```bluespec // inSet.exists(myFun) can be expressed via `fold`, when `inSet` is finite - val myExists(inSet: Set[a], pred: a => bool): bool = + pure def myExists(inSet: Set[a], pred: a => bool): bool = inSet.fold(false, (result, elem) => result or pred(elem)) // inSet.forall(myFun) can be expressed via `fold`, when `inSet` is finite - val myForall(inSet: Set[a], pred: a => bool): bool = + pure def myForall(inSet: Set[a], pred: a => bool): bool = inSet.fold(true, (result, elem) => result and pred(elem)) // inSet.filter(myFun) can be expressed via `fold`, when `inSet` is finite - val myFilter(inSet: Set[a], pred: a => bool): Set[a] = + pure def myFilter(inSet: Set[a], pred: a => bool): Set[a] = inSet.fold(Set(), (result, elem) => if (pred(elem)) result.union(Set(elem)) else result) // inSet.map(myFun) can be expressed via `fold`, when `inSet` is finite - val myMap(inSet: Set[a], mapper: a => b): Set[b] = + pure def myMap(inSet: Set[a], mapper: a => b): Set[b] = inSet.fold(Set(), (result, elem) => result.union(Set(mapper(elem)))) // flatten(inSet) can be expressed via `fold`, when `inSet` is finite - val myFlatten(inSet: Set[Set[a]]): Set[a] = + pure def myFlatten(inSet: Set[Set[a]]): Set[a] = inSet.fold(Set(), (result, elem) => result.union(elem) ) ``` diff --git a/tutorials/lesson4-sets/sets.qnt b/tutorials/lesson4-sets/sets.qnt index 4b1924fa3..13f776b95 100644 --- a/tutorials/lesson4-sets/sets.qnt +++ b/tutorials/lesson4-sets/sets.qnt @@ -53,49 +53,49 @@ module sets { pure def someCoinsExample = Set("ATOM", "ETH", "USDT") // which coins can be bought by swapping a coin from `someCoins` once? - val buyableVia1Swap(someCoins) = + pure def buyableVia1Swap(someCoins) = availableUnorderedPairs .filter(p => p.intersect(someCoins).size() == 1) .flatten() .exclude(someCoins) // which coins can be bought by swapping a coin from `someCoins` exactly twice? - val buyableVia2Swaps(someCoins) = + pure def buyableVia2Swaps(someCoins) = someCoins .buyableVia1Swap() .buyableVia1Swap() // which coins can be bought by swapping a coin from `someCoins` twice? - val buyableVia1or2Swaps(someCoins) = + pure def buyableVia1or2Swaps(someCoins) = buyableVia1Swap(someCoins) .union(buyableVia2Swaps(someCoins)) // which coins can we buy via n swaps when starting from `someCoins` - val buyableNSwaps(someCoins, n) = + pure def buyableNSwaps(someCoins, n) = 1.to(n).fold(someCoins, (prevCoins, i) => buyableVia1Swap(prevCoins)) // inSet.exists(myFun) can be expressed via `fold`, when `inSet` is finite - val myExists(inSet: Set[a], pred: a => bool): bool = + pure def myExists(inSet: Set[a], pred: a => bool): bool = inSet.fold(false, (result, elem) => result or pred(elem)) // inSet.forall(myFun) can be expressed via `fold`, when `inSet` is finite - val myForall(inSet: Set[a], pred: a => bool): bool = + pure def myForall(inSet: Set[a], pred: a => bool): bool = inSet.fold(true, (result, elem) => result and pred(elem)) // inSet.filter(myFun) can be expressed via `fold`, when `inSet` is finite - val myFilter(inSet: Set[a], pred: a => bool): Set[a] = + pure def myFilter(inSet: Set[a], pred: a => bool): Set[a] = inSet.fold(Set(), (result, elem) => if (pred(elem)) result.union(Set(elem)) else result) // inSet.map(myFun) can be expressed via `fold`, when `inSet` is finite - val myMap(inSet: Set[a], mapper: a => b): Set[b] = + pure def myMap(inSet: Set[a], mapper: a => b): Set[b] = inSet.fold(Set(), (result, elem) => result.union(Set(mapper(elem)))) // flatten(inSet) can be expressed via `fold`, when `inSet` is finite - val myFlatten(inSet: Set[Set[a]]): Set[a] = + pure def myFlatten(inSet: Set[Set[a]]): Set[a] = inSet.fold(Set(), (result, elem) => result.union(elem) ) // all combinations of unordered pairs that have exactly 4 pairs diff --git a/tutorials/lesson4-sets/sets.template.qnt b/tutorials/lesson4-sets/sets.template.qnt index b4abb23bc..edad617f1 100644 --- a/tutorials/lesson4-sets/sets.template.qnt +++ b/tutorials/lesson4-sets/sets.template.qnt @@ -306,20 +306,20 @@ themselves. pure def someCoinsExample = Set("ATOM", "ETH", "USDT") // which coins can be bought by swapping a coin from `someCoins` once? - val buyableVia1Swap(someCoins) = + pure def buyableVia1Swap(someCoins) = availableUnorderedPairs .filter(p => p.intersect(someCoins).size() == 1) .flatten() .exclude(someCoins) // which coins can be bought by swapping a coin from `someCoins` exactly twice? - val buyableVia2Swaps(someCoins) = + pure def buyableVia2Swaps(someCoins) = someCoins .buyableVia1Swap() .buyableVia1Swap() // which coins can be bought by swapping a coin from `someCoins` twice? - val buyableVia1or2Swaps(someCoins) = + pure def buyableVia1or2Swaps(someCoins) = buyableVia1Swap(someCoins) .union(buyableVia2Swaps(someCoins)) /*! @@ -395,7 +395,7 @@ Also easy: Just take the set union of what is possible in one or two swaps: !*/ // which coins can we buy via n swaps when starting from `someCoins` - val buyableNSwaps(someCoins, n) = + pure def buyableNSwaps(someCoins, n) = 1.to(n).fold(someCoins, (prevCoins, i) => buyableVia1Swap(prevCoins)) /*! @@ -465,26 +465,26 @@ Now @KryptoCoffeeCat can compute what they can buy via various numbers of swaps: !*/ // inSet.exists(myFun) can be expressed via `fold`, when `inSet` is finite - val myExists(inSet: Set[a], pred: a => bool): bool = + pure def myExists(inSet: Set[a], pred: a => bool): bool = inSet.fold(false, (result, elem) => result or pred(elem)) // inSet.forall(myFun) can be expressed via `fold`, when `inSet` is finite - val myForall(inSet: Set[a], pred: a => bool): bool = + pure def myForall(inSet: Set[a], pred: a => bool): bool = inSet.fold(true, (result, elem) => result and pred(elem)) // inSet.filter(myFun) can be expressed via `fold`, when `inSet` is finite - val myFilter(inSet: Set[a], pred: a => bool): Set[a] = + pure def myFilter(inSet: Set[a], pred: a => bool): Set[a] = inSet.fold(Set(), (result, elem) => if (pred(elem)) result.union(Set(elem)) else result) // inSet.map(myFun) can be expressed via `fold`, when `inSet` is finite - val myMap(inSet: Set[a], mapper: a => b): Set[b] = + pure def myMap(inSet: Set[a], mapper: a => b): Set[b] = inSet.fold(Set(), (result, elem) => result.union(Set(mapper(elem)))) // flatten(inSet) can be expressed via `fold`, when `inSet` is finite - val myFlatten(inSet: Set[Set[a]]): Set[a] = + pure def myFlatten(inSet: Set[Set[a]]): Set[a] = inSet.fold(Set(), (result, elem) => result.union(elem) ) /*!