Skip to content

Latest commit

 

History

History
83 lines (77 loc) · 5.65 KB

README.md

File metadata and controls

83 lines (77 loc) · 5.65 KB
██████╗  █████╗ ██████╗ ██████╗ ██╗     ███████╗     ██████╗██╗███████╗ █████╗ ██████╗ 
██╔══██╗██╔══██╗██╔══██╗██╔══██╗██║     ██╔════╝    ██╔════╝██║██╔════╝██╔══██╗██╔══██╗
██████╔╝███████║██║  ██║██║  ██║██║     █████╗      ██║     ██║█████╗  ███████║██████╔╝
██╔═══╝ ██╔══██║██║  ██║██║  ██║██║     ██╔══╝      ██║     ██║██╔══╝  ██╔══██║██╔══██╗
██║     ██║  ██║██████╔╝██████╔╝███████╗███████╗    ╚██████╗██║██║     ██║  ██║██║  ██║
╚═╝     ╚═╝  ╚═╝╚═════╝ ╚═════╝ ╚══════╝╚══════╝     ╚═════╝╚═╝╚═╝     ╚═╝  ╚═╝╚═╝  ╚═╝

PaddlePaddle cifar100

To explore the limit performance of opensource classifier on CIFAR100 with PaddlePaddle.

Repo dynamic

Relate update

  • 2021.05.27: Releases the training of the MnasNet model
  • 2021.04.24: Releases the training of the ResNeXt model
  • 2021.04.16: Releases the training of the shufflenet series model
  • 2021.04.09: Releases the training of the vgg model
  • 2021.04.08: Releases the training of the MobileNet v2 model
  • 2021.04.07: Releases the training of the MobileNet v1 model
  • 2021.04.04: Releases the training of the ViT(vision transformer) variants model
  • 2021.03.30: Releases the training of the ResNet series model

Model results

Some nets might get the best result from other hyperparameters, You can set up other hyperparameters for training.

network params top1 Acc top5 Acc yaml
resnet18 11.2M 0.7681 0.9345 common.yml
resnet34 21.3M 0.7835 0.9439 common.yml
resnet50 23.8M 0.8020 0.9530 common.yml
resnet101 42.8M 0.8016 0.9540 common.yml
resnet152 58.5M 0.8083 0.9549 common.yml
vit_p4_d6_h12_e384 10.7M 0.5689 0.8370 vit.yml
vit_p4_d6_h12_e192 2.7M 0.5428 0.8207 vit.yml
vit_p4_d12_h12_e384 21.4M 0.5570 0.8296 vit.yml
vit_p4_d12_h12_e192 5.4M 0.5375 0.8201 vit.yml
mobilenetv1 x1.0 3.3M 0.6607 0.8792 mobilenetv1.yml
mobilenetv1 x0.75 1.9M 0.6481 0.8646 mobilenetv1.yml
mobilenetv1 x0.5 0.88M 0.6095 0.8493 mobilenetv1.yml
mobilenetv1 x0.25 0.24M 0.5645 0.8292 mobilenetv1.yml
mobilenetv2 x1.0 0.24M 0.677 0.8912 mobilenetv2.yml
mobilenetv2 x0.75 1.5M 0.6685 0.8874 mobilenetv2.yml
mobilenetv2 x0.5 0.8M 0.6265 0.8631 mobilenetv2.yml
mobilenetv2 x0.25 0.38M 0.5631 0.831 mobilenetv2.yml
vgg19 BN 39.3M 0.716 0.8997 vgg.yml
vgg16 BN 34.0M 0.7174 0.9053 vgg.yml
vgg13 BN 28.7M 0.7133 0.9029 vgg.yml
vgg11 BN 28.5M 0.6773 0.8808 vgg.yml
shufflenet v1 groups3 1.04M 0.6966 0.8975 shufflenetv1.yml
shufflenet v2 scale1.0 swish 1.37M 0.7116 0.9116 shufflenetv2.yml
shufflenet v2 scale1.0 relu 1.37M 0.6924 0.8952 shufflenetv2.yml
swin transformer tiny 6.93M 0.5303 0.7833 swin_transformer.yml
resnext50 32x4d 23.2M 0.7744 0.934 common.yml
resnext101 32x8d 87.1M 0.7938 0.9407 common.yml
mnasnet 1.0 3.3M 0.7039 0.8914 mnasnet.yml

Test curve

csv_dir download from VisualDL scalar Test curve

Requirements

python3 -m pip install -r requirements.txt

Usage

Training & Evaluation

Training and Evaluation are put together, using PaddlePaddle HighAPI(hapi). To train baseline PaddlePaddle-cifar100-resnet18 on a single gpu for 300 epochs run:

python3 main.py -c resnet18 -y yamls/common.yml

Visualization

VisualDL: VisualDL is the PaddlePaddle visual analysis tool.

visualdl --logdir logs --host 0.0.0.0

VisualDL display details: visuadlpage

Relevant papers