From 5f96928afc961840e724c5f65587a1e1adeed4b1 Mon Sep 17 00:00:00 2001 From: itskalvik Date: Thu, 12 Sep 2024 13:56:36 -0400 Subject: [PATCH] Depricate Agg baseline method --- benchmarks/benchmark.py | 56 +---------------------------------------- 1 file changed, 1 insertion(+), 55 deletions(-) diff --git a/benchmarks/benchmark.py b/benchmarks/benchmark.py index a34d408..2a65836 100644 --- a/benchmarks/benchmark.py +++ b/benchmarks/benchmark.py @@ -276,27 +276,6 @@ def main(dataset_path, # --------------------------------------------------------------------------------- - # Adaptive SGP with covariance aggregation for continuous sensing - if method=='Adaptive-SGP-Agg': - ipp_sgpr, _ = continuous_sgp(num_waypoints, - X_train, - noise_variance, - kernel, - IPPTransform(num_robots=num_robots, - sampling_rate=sampling_rate, - aggregate_fov=True), - Xu_init=Xu_init.reshape(-1, 2), - max_steps=0) - solution_X, solution_y, param_time, ipp_time, budget_satisfied = run_aipp(X_train, - ipp_sgpr, - Xu_init, - path2data, - continuous_ipp, - 'SGP', - 'SSGP' if continuous_ipp else 'GP') - - # --------------------------------------------------------------------------------- - # Adaptive CMA-ES if method=='Adaptive-CMA-ES': cma_es = CMA_ES(candidates, @@ -371,36 +350,6 @@ def main(dataset_path, # --------------------------------------------------------------------------------- - # Online SGP with covariance aggregation for continuous sensing - if method=='Online-SGP-Agg': - start_time = time() - ipp_sgpr, _ = continuous_sgp(num_waypoints, - X_train, - noise_variance_opt, - kernel_opt, - IPPTransform(num_robots=num_robots, - sampling_rate=sampling_rate, - aggregate_fov=True), - Xu_init=Xu_init.reshape(-1, 2), - optimizer='scipy') - solution = ipp_sgpr.inducing_variable.Z.numpy() - solution = solution.reshape(num_robots, num_waypoints, 2) - end_time = time() - ipp_time = end_time-start_time - - budget_constraint = ipp_sgpr.transform.constraints(ipp_sgpr.inducing_variable.Z) - budget_satisfied = budget_constraint > -10. - - solution_X, solution_y = [], [] - for r in range(num_robots): - X_new, y_new = path2data(solution[r]) - solution_X.extend(X_new) - solution_y.extend(y_new) - solution_X = np.array(solution_X) - solution_y = np.array(solution_y) - - # --------------------------------------------------------------------------------- - # Online CMA-ES if method=='Online-CMA-ES': start_time = time() @@ -542,10 +491,7 @@ def main(dataset_path, 'Online-SGP', 'Online-CMA-ES'] - if args.sampling_rate > 2: - methods.append('Adaptive-SGP-Agg') - methods.append('Online-SGP-Agg') - elif args.sampling_rate == 2 and \ + if args.sampling_rate == 2 and \ args.num_robots == 1 and \ not args.distance_budget: methods.append('Online-BO')