-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
190 lines (148 loc) · 6.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# mostly taken verbatim from: https://github.com/mlfoundations/wise-ft/blob/58b7a4b343b09dc06606aa929c2ef51accced8d1/src/models/utils.py
import os
import torch
import pickle
import json
import numpy as np
import math
def truncate(number, decimals):
if decimals < 0:
raise ValueError("Decimal places must be non-negative")
elif decimals == 0:
return math.floor(number)
else:
factor = 10 ** decimals
return math.floor(number * factor) / factor
def assign_learning_rate(param_group, new_lr):
param_group["lr"] = new_lr
def _warmup_lr(base_lr, warmup_length, step):
return base_lr * (step + 1) / warmup_length
def cosine_decay(start_value, end_value, num_steps):
"""
Function to decay a scalar from start_value to end_value over num_steps using a cosine scheduler.
Args:
start_value (float): The starting value of the scalar.
end_value (float): The ending value of the scalar.
num_steps (int): The number of steps over which the decay should happen.
Returns:
torch.Tensor: A tensor containing the decayed values at each step.
"""
steps = torch.arange(0, num_steps, dtype=torch.float32)
cosine_decay_values = end_value + 0.5 * (start_value - end_value) * (1 + torch.cos(torch.pi * steps / num_steps))
return cosine_decay_values
def linear_decay(start_value, end_value, num_steps):
"""
Function to decay a scalar from start_value to end_value over num_steps using a linear scheduler.
Args:
start_value (float): The starting value of the scalar.
end_value (float): The ending value of the scalar.
num_steps (int): The number of steps over which the decay should happen.
Returns:
torch.Tensor: A tensor containing the decayed values at each step.
"""
steps = torch.arange(0, num_steps, dtype=torch.float32)
linear_decay_values = start_value + (end_value - start_value) * (steps / num_steps)
return linear_decay_values
def exponential_decay(start_value, end_value, num_steps):
"""
Function to decay a scalar from start_value to end_value over num_steps using an exponential scheduler.
Args:
start_value (float): The starting value of the scalar.
end_value (float): The ending value of the scalar.
num_steps (int): The number of steps over which the decay should happen.
Returns:
torch.Tensor: A tensor containing the decayed values at each step.
"""
steps = torch.arange(0, num_steps, dtype=torch.float32)
exponential_decay_values = start_value * (end_value / start_value) ** (steps / num_steps)
return exponential_decay_values
def cosine_lr(optimizer, base_lrs, warmup_length, steps):
if not isinstance(base_lrs, list):
base_lrs = [base_lrs for _ in optimizer.param_groups]
assert len(base_lrs) == len(optimizer.param_groups)
def _lr_adjuster(step):
for param_group, base_lr in zip(optimizer.param_groups, base_lrs):
if step < warmup_length:
lr = _warmup_lr(base_lr, warmup_length, step)
else:
e = step - warmup_length
es = steps - warmup_length
lr = 0.5 * (1 + np.cos(np.pi * e / es)) * base_lr
assign_learning_rate(param_group, lr)
return _lr_adjuster
def linear_lr(optimizer, base_lrs, warmup_length, steps):
if not isinstance(base_lrs, list):
base_lrs = [base_lrs for _ in optimizer.param_groups]
assert len(base_lrs) == len(optimizer.param_groups)
def _lr_adjuster(step):
for param_group, base_lr in zip(optimizer.param_groups, base_lrs):
if step < warmup_length:
lr = _warmup_lr(base_lr, warmup_length, step)
else:
e = step - warmup_length
es = steps - warmup_length
lr = base_lr - (base_lr / es) * e
assign_learning_rate(param_group, lr)
return _lr_adjuster
def accuracy(output, target, topk=(1,)):
pred = output.topk(max(topk), 1, True, True)[1].t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
return [float(correct[:k].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) for k in topk]
def torch_save(classifier, save_path):
if os.path.dirname(save_path) != '':
os.makedirs(os.path.dirname(save_path), exist_ok=True)
with open(save_path, 'wb') as f:
pickle.dump(classifier.cpu(), f)
def torch_load(save_path, device=None):
with open(save_path, 'rb') as f:
classifier = pickle.load(f)
if device is not None:
classifier = classifier.to(device)
return classifier
def fisher_save(fisher, save_path):
if os.path.dirname(save_path) != '':
os.makedirs(os.path.dirname(save_path), exist_ok=True)
fisher = {k: v.cpu() for k, v in fisher.items()}
with open(save_path, 'wb') as f:
pickle.dump(fisher, f)
def fisher_load(save_path, device=None):
with open(save_path, 'rb') as f:
fisher = pickle.load(f)
if device is not None:
fisher = {k: v.to(device) for k, v in fisher.items()}
return fisher
def get_logits(inputs, classifier):
assert callable(classifier)
if hasattr(classifier, 'to'):
classifier = classifier.to(inputs.device)
return classifier(inputs)
def get_probs(inputs, classifier):
if hasattr(classifier, 'predict_proba'):
probs = classifier.predict_proba(inputs.detach().cpu().numpy())
return torch.from_numpy(probs)
logits = get_logits(inputs, classifier)
return logits.softmax(dim=1)
class LabelSmoothing(torch.nn.Module):
def __init__(self, smoothing=0.0):
super(LabelSmoothing, self).__init__()
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
def forward(self, x, target):
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss.mean()
def get_IN_classes():
# Load the class index to name mapping
with open('/path_here/imagenet_class_index.json', 'r') as f:
class_idx = json.load(f)
idx_to_class = {int(k): v for k, v in class_idx.items()}
return [idx_to_class[i][1] for i in range(len(idx_to_class))]
def get_caltech_classes(dataset_dir):
# List all directories in the dataset root - each directory corresponds to a class
class_dirs = [d for d in os.listdir(dataset_dir) if os.path.isdir(os.path.join(dataset_dir, d))]
# Sort or process the class names as needed
class_names = [x.split('.')[-1].split('-101')[0] for x in sorted(class_dirs)]
return class_names