forked from faizaan09/visual-qa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_spatial_attn.py
353 lines (287 loc) · 12.6 KB
/
main_spatial_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from __future__ import print_function
import os
import torch
import random
import argparse
import json
import spacy
import pickle as pkl
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.optim.lr_scheduler import ReduceLROnPlateau
from datetime import datetime
from model import *
from metrics import filterOutput, maskedLoss, word_accuracy
from torchtext.data import TabularDataset, Field, Iterator
from tensorboardX import SummaryWriter
spacy_en = spacy.load('en')
def tokenizer(text): # create a tokenizer function
return [tok.text for tok in spacy_en.tokenizer(text)]
def main(params):
try:
output_dir = os.path.join(
params['outf'], datetime.strftime(datetime.now(), "%Y%m%d_%H%M"))
os.makedirs(output_dir)
except OSError:
pass
if torch.cuda.is_available() and not params['cuda']:
print(
"WARNING: You have a CUDA device, so you should probably run with --cuda"
)
writer = SummaryWriter(output_dir)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SOS_token = '<sos>'
EOS_token = '<eos>'
PAD_token = '<pad>'
TEXT = Field(
sequential=True,
use_vocab=True,
tokenize=tokenizer,
lower=True,
batch_first=True,
init_token=SOS_token,
eos_token=EOS_token)
# LABEL = Field(sequential=True, use_vocab=True, tokenize=tokenizer, is_target=True, batch_first=True, init_token='#', eos_token='$')
IMG_IND = Field(sequential=False, use_vocab=False, batch_first=True)
fields = {
'ans': ('ans', TEXT),
'img_ind': ('img_ind', IMG_IND),
'question': ('question', TEXT)
}
train, val = TabularDataset.splits(
path=params['dataroot'],
train=params['input_train'],
validation=params['input_test'],
format='csv',
skip_header=False,
fields=fields,
)
print("Train data")
print(train[0].__dict__.keys())
print(train[0].ans, train[0].img_ind, train[0].question)
print("Validation data")
print(val[0].__dict__.keys())
print(val[0].ans, val[0].img_ind, val[0].question)
print("Building Vocabulary ..")
TEXT.build_vocab(train, vectors='glove.6B.100d')
vocab = TEXT.vocab
PAD_token_ind = vocab.stoi[PAD_token]
SOS_token_ind = vocab.stoi[SOS_token]
EOS_token_ind = vocab.stoi[EOS_token]
print("Creating Embedding from vocab vectors ..")
txt_embed = nn.Embedding.from_pretrained(vocab.vectors)
print("Text Embeddings are generated of size ", txt_embed.weight.size())
print("Loading Image embeddings ..")
with open(params['image_embeddings'], 'rb') as f:
img_embs = pkl.load(f)['image_features']
img_embed = nn.Embedding.from_pretrained(torch.FloatTensor(img_embs))
print("Creating Encoder_attn ..")
encoder = Encoder(img_embed, txt_embed, params)
print(encoder)
print("Creating Decoder ..")
decoder = Decoder(txt_embed, params)
print(decoder)
criterion = torch.nn.PairwiseDistance(keepdim=False)
criterion.to(device)
## [Completed] TODO(Jay) : Remove this check and use .to(device)
# if params['cuda']:
# encoder.cuda()
# decoder.cuda()
# criterion.cuda()
encoder_optimizer = torch.optim.Adam(
encoder.parameters(), lr=params['lr'], weight_decay=1e-5, amsgrad=True)
decoder_optimizer = torch.optim.Adam(
decoder.parameters(), lr=params['lr'], weight_decay=1e-5, amsgrad=True)
encoder_LR_scheduler = ReduceLROnPlateau(
encoder_optimizer, 'min', patience=1)
decoder_LR_scheduler = ReduceLROnPlateau(
decoder_optimizer, 'min', patience=1)
if params['use_checkpoint']:
checkpoint = torch.load(params['enc_dec_model'])
encoder.load_state_dict(checkpoint['encoder_state_dict'])
decoder.load_state_dict(checkpoint['decoder_state_dict'])
encoder_optimizer.load_state_dict(
checkpoint['encoder_optimizer_state_dict'])
decoder_optimizer.load_state_dict(
checkpoint['decoder_optimizer_state_dict'])
encoder_LR_scheduler.load_state_dict(checkpoint['encoder_LR_scheduler'])
decoder_LR_scheduler.load_state_dict(checkpoint['decoder_LR_scheduler'])
encoder.to(device)
decoder.to(device)
train_iter, val_iter = Iterator.splits((train, val),
batch_sizes=(params['batch_size'],
params['batch_size']),
sort=False,
shuffle=True,
device=device)
for epoch in range(params['niter']):
for is_train in (True, False):
print('Is Training: ', is_train)
if is_train:
encoder.train()
decoder.train()
data_iter = train_iter
else:
encoder.eval()
decoder.eval()
data_iter = val_iter
total_loss = 0
total_acc = 0
with torch.set_grad_enabled(is_train):
for i, row in enumerate(data_iter, 1):
if len(row) < params['batch_size']:
continue
encoder.zero_grad()
decoder.zero_grad()
ans, img_ind, question = row.ans, row.img_ind, row.question
batch_size = params['batch_size']
## target_length-1 since we are not predicting SOS token
target_length = ans.shape[1] - 1
encoder.hidden = encoder.init_hidden(params)
ans = ans.to(device)
img_ind = img_ind.to(device)
question = question.to(device)
encoder.hidden = (encoder.hidden[0].to(device),
encoder.hidden[1].to(device))
ans_embed = txt_embed(ans)
encoder_output = encoder(img_ind, question)
decoder_input = ans_embed[:, 0].reshape(
(batch_size, 1, -1)) ## (batch_size, 1) check again
ans_embed = ans_embed[:, 1:] ## removed the SOS token
ans = ans[:, 1:] ## removed the SOS token
decoder_hidden = decoder.init_hidden(encoder_output, params)
if params['cuda']:
decoder_hidden = (decoder_hidden[0].cuda(),
decoder_hidden[1].cuda())
outputs = torch.zeros(batch_size, target_length,
params['txt_emb_size'])
## [Completed] TODO(Jay) : remove the sos token from the ans and ans_embed before calc loss and acc
for di in range(target_length - 1):
decoder_output, decoder_hidden = decoder(
decoder_input, decoder_hidden)
## TODO(Jay) : Detach the input from history
decoder_input = decoder_output
outputs[:, di, :] = decoder_output.reshape(
batch_size, -1)
filtered_labels, filtered_label_embeds, filtered_outputs = filterOutput(
outputs.reshape(batch_size * target_length, -1),
ans.reshape(batch_size * target_length, -1),
ans_embed.reshape(batch_size * target_length, -1),
PAD_token_ind)
filtered_label_embeds = filtered_label_embeds.to(device)
filtered_outputs = filtered_outputs.to(device)
batch_loss = maskedLoss(filtered_label_embeds,
filtered_outputs, criterion)
batch_acc = word_accuracy(filtered_outputs,
vocab.vectors.to(device),
filtered_labels)
total_loss += batch_loss.item()
total_acc += batch_acc
if is_train:
if i % 1000 == 0:
print(
'[%d/%d][%d/%d] train_loss: %.4f, Accuracy: %.4f'
% (epoch, params['niter'], i, len(data_iter),
total_loss / i, total_acc / i))
batch_loss.backward()
encoder_optimizer.step()
decoder_optimizer.step()
avg_loss = total_loss / len(data_iter)
avg_acc = total_acc / len(data_iter)
if is_train:
PATH = os.path.join(output_dir, 'enc_dec_model.pth')
torch.save({
'encoder_state_dict':
encoder.state_dict(),
'decoder_state_dict':
decoder.state_dict(),
'encoder_optimizer_state_dict':
encoder_optimizer.state_dict(),
'decoder_optimizer_state_dict':
decoder_optimizer.state_dict(),
'encoder_LR_scheduler':
encoder_LR_scheduler.state_dict(),
'decoder_LR_scheduler':
decoder_LR_scheduler.state_dict(),
}, PATH)
writer.add_scalars('data', {
'train_loss': avg_loss,
'train_acc': avg_acc
}, epoch)
else:
print('Calculating Validation loss')
print(
'val_loss: %.4f, Accuracy: %.4f' % (avg_loss, avg_acc))
encoder_LR_scheduler.step(avg_loss)
decoder_LR_scheduler.step(avg_loss)
writer.add_scalars('data', {
'val_loss': avg_loss,
'val_acc': avg_acc
}, epoch)
writer.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# input json
parser.add_argument(
'--input_train', default='vqa_train.csv', help='input json file')
parser.add_argument(
'--input_test', default='vqa_test.csv', help='input json file')
parser.add_argument(
'--mapping_file',
default='image_index.pkl',
help='This files contains the img_id to path mapping and vice versa')
parser.add_argument(
'--image_embeddings',
default='./data/img_embedding.pkl',
help='output pkl file with img features')
parser.add_argument(
'--use_checkpoint',
help='Flag which states whether to use the previous Model checkpoint')
parser.add_argument(
'--enc_dec_model',
default='output/enc_dec_model.pth',
help='Saved model path')
parser.add_argument('--dataroot', default='./data/', help='path to dataset')
parser.add_argument(
'--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument(
'--batch_size', type=int, default=32, help='input batch size')
parser.add_argument(
'--n_layers', type=int, default=2, help='Num of layers in LSTM')
parser.add_argument(
'--bidirection', default=True, help='Bidirectional LSTM')
parser.add_argument(
'--txt_emb_size',
type=int,
default=100,
help='the size of the text embedding vector')
parser.add_argument(
'--img_feature_size',
type=int,
default=2048,
help='the size of the image feature vector')
parser.add_argument(
'--niter', type=int, default=25, help='number of epochs to train for')
parser.add_argument(
'--lr', type=float, default=0.001, help='learning rate, default=0.001')
parser.add_argument(
'--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument(
'--cuda', default=True, action='store_true', help='enables cuda')
parser.add_argument(
'--outf',
default='./output/',
help='folder to output images and model checkpoints')
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument(
'--eval',
action='store_true',
help="choose whether to train the model or show demo")
args = parser.parse_args()
params = vars(args)
print('parsed input parameters:')
print(json.dumps(params, indent=2))
main(params)