-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGmail_implementation.py
234 lines (194 loc) · 9.03 KB
/
Gmail_implementation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import base64
import time
import os
from google.oauth2.credentials import Credentials
import numpy as np
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
import joblib
from email import message_from_bytes
from bs4 import BeautifulSoup
import logging
# Configuração de caminhos
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
MODEL_PATH = os.path.join(BASE_DIR, 'spam_classifier_model.joblib')
VECTORIZER_PATH = os.path.join(BASE_DIR, 'vectorizer.joblib')
CREDENTIALS_PATH = os.path.join(BASE_DIR, 'path', 'to', 'credentials.json')
# Configuração de logging com caminho absoluto
LOG_PATH = os.path.join(BASE_DIR, 'spam_classifier.log')
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(LOG_PATH),
logging.StreamHandler()
]
)
class GmailSpamClassifier:
def __init__(self, credentials_path=CREDENTIALS_PATH,
model_path=MODEL_PATH,
vectorizer_path=VECTORIZER_PATH):
self.SCOPES = ['https://www.googleapis.com/auth/gmail.readonly']
self.credentials_path = credentials_path
# Verificação da existência de arquivos
self._verify_files_exist(credentials_path, model_path, vectorizer_path)
# Carregar modelo e vectorizer
try:
logging.info(f"Tentando carregar modelo de: {model_path}")
self.model = joblib.load(model_path)
logging.info(f"Tentando carregar vectorizer de: {vectorizer_path}")
self.vectorizer = joblib.load(vectorizer_path)
logging.info("Modelo e vectorizer carregados com sucesso")
except Exception as e:
logging.error(f"Erro ao carregar modelo ou vectorizer: {e}")
raise
# Autenticação com o Gmail
try:
self.service = self._authenticate()
logging.info("Autenticação com Gmail realizada com sucesso")
except Exception as e:
logging.error(f"Erro na autenticação com Gmail: {e}")
raise
self.known_emails = set()
def _verify_files_exist(self, credentials_path, model_path, vectorizer_path):
"""Verifica se todos os arquivos necessários existem"""
files_to_check = {
'Credenciais': credentials_path,
'Modelo': model_path,
'Vectorizer': vectorizer_path
}
missing_files = []
for file_name, file_path in files_to_check.items():
if not os.path.exists(file_path):
missing_files.append(f"{file_name} ({file_path})")
if missing_files:
error_msg = "Arquivos não encontrados:\n" + "\n".join(missing_files)
logging.error(error_msg)
raise FileNotFoundError(error_msg)
def _authenticate(self):
# Realiza a autenticação com a API do Gmail
try:
flow = InstalledAppFlow.from_client_secrets_file(
self.credentials_path,
self.SCOPES
)
creds = flow.run_local_server(port=0)
return build('gmail', 'v1', credentials=creds)
except Exception as e:
logging.error(f"Erro durante a autenticação: {e}")
raise
def _extract_email_content(self, msg):
# Extrai e combina diferentes partes do email"
headers = msg.get('payload', {}).get('headers', [])
subject = next((header['value'] for header in headers if header['name'].lower() == 'subject'), '')
sender = next((header['value'] for header in headers if header['name'].lower() == 'from'), '')
body = self._get_email_body(msg.get('payload', {}))
full_content = f"{subject} {sender} {body}"
return self._preprocess_email_content(full_content)
def _get_email_body(self, payload):
# Extrai o corpo do email recursivamente
if 'body' in payload and 'data' in payload['body']:
return base64.urlsafe_b64decode(payload['body']['data']).decode('utf-8', errors='ignore')
if 'parts' in payload:
text_parts = []
for part in payload['parts']:
if part['mimeType'].startswith('text/'):
if 'data' in part['body']:
text_parts.append(base64.urlsafe_b64decode(part['body']['data']).decode('utf-8', errors='ignore'))
elif 'parts' in part:
text_parts.append(self._get_email_body(part))
return ' '.join(text_parts)
return ''
def _preprocess_email_content(self, content):
# Pré-processamento do conteúdo do email
if not content:
return ""
soup = BeautifulSoup(content, 'html.parser')
text = soup.get_text()
return text.lower().strip()
def classify_email(self, email_content):
# Classifica um email usando o modelo treinado
try:
content_vectorized = self.vectorizer.transform([email_content])
prediction = self.model.predict(content_vectorized)[0]
# Usa decision_function para obter a distância do hiperplano
confidence_score = abs(self.model.decision_function(content_vectorized)[0])
# Normaliza o score para algo entre 0 e 1 usando sigmoid
confidence = 1 / (1 + np.exp(-confidence_score))
return prediction, confidence
except Exception as e:
logging.error(f"Erro na classificação: {e}")
return 'erro', 0.0
def get_initial_unread_emails(self):
# Obtém a lista inicial de emails não lidos
try:
results = self.service.users().messages().list(
userId='me',
labelIds=['INBOX'],
q='is:unread'
).execute()
self.known_emails = set(msg['id'] for msg in results.get('messages', []))
logging.info(f"Identificados {len(self.known_emails)} emails não lidos iniciais")
except Exception as e:
logging.error(f"Erro ao obter emails iniciais: {e}")
self.known_emails = set()
def process_new_emails(self):
# Processa novos emails não lidos
try:
results = self.service.users().messages().list(
userId='me',
labelIds=['INBOX'],
q='is:unread'
).execute()
messages = results.get('messages', [])
if not messages:
logging.info("Nenhum novo email encontrado")
return
for message in messages:
if message['id'] in self.known_emails:
continue
msg = self.service.users().messages().get(userId='me', id=message['id']).execute()
self.known_emails.add(message['id'])
email_content = self._extract_email_content(msg)
prediction, confidence = self.classify_email(email_content)
headers = msg.get('payload', {}).get('headers', [])
subject = next((h['value'] for h in headers if h['name'].lower() == 'subject'), 'Sem Assunto')
sender = next((h['value'] for h in headers if h['name'].lower() == 'from'), 'Remetente Desconhecido')
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')
# Exibe os detalhes do e-mail no terminal de forma organizada
logging.info("\n" + "="*50)
logging.info(" Novo e-mail processado ")
logging.info("="*50)
logging.info(f"ID: {message['id']}")
logging.info(f"De: {sender}")
logging.info(f"Assunto: {subject}")
logging.info(f"Corpo da mensagem:\n{email_content}\n")
logging.info(f"Classificação: {prediction}")
logging.info(f"Confiança: {confidence:.2%}")
logging.info("="*50 + "\n")
except Exception as e:
logging.error(f"Erro ao processar novos emails: {e}")
def run(self, check_interval=10):
# Executa o monitoramento contínuo
self.get_initial_unread_emails()
logging.info("Iniciando monitoramento de emails...")
try:
while True:
self.process_new_emails()
time.sleep(check_interval)
except KeyboardInterrupt:
logging.info("Monitoramento interrompido pelo usuário")
except Exception as e:
logging.error(f"Erro durante o monitoramento: {e}")
if __name__ == "__main__":
try:
print("Iniciando classificador de spam...")
print(f"Diretório base: {BASE_DIR}")
print(f"Arquivo de credenciais: {CREDENTIALS_PATH}")
classifier = GmailSpamClassifier()
classifier.run()
except FileNotFoundError as e:
print("\nErro: Arquivos necessários não encontrados!")
print(str(e))
except Exception as e:
print(f"\nErro inesperado: {e}")