-
Notifications
You must be signed in to change notification settings - Fork 56
/
model_init.py
executable file
·61 lines (56 loc) · 2.68 KB
/
model_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from src.network import *
import torch
import torch.nn as nn
import warnings
__all__ = ['Newmodel', 'get_model']
class Newmodel(Basemodel):
"""replace the image representation method and classifier
Args:
modeltype: model archtecture
representation: image representation method
num_classes: the number of classes
freezed_layer: the end of freezed layers in network
pretrained: whether use pretrained weights or not
"""
def __init__(self, modeltype, representation, num_classes, freezed_layer, pretrained=False):
super(Newmodel, self).__init__(modeltype, pretrained)
if representation is not None:
representation_method = representation['function']
representation.pop('function')
representation_args = representation
representation_args['input_dim'] = self.representation_dim
self.representation = representation_method(**representation_args)
fc_input_dim = self.representation.output_dim
if not pretrained:
if isinstance(self.classifier, nn.Sequential): # for alexnet and vgg*
conv6_index = 0
for m in self.classifier.children():
if isinstance(m, nn.Linear):
output_dim = m.weight.size(0) # 4096
self.classifier[conv6_index] = nn.Linear(fc_input_dim, output_dim) #conv6
break
conv6_index += 1
self.classifier[-1] = nn.Linear(output_dim, num_classes)
else:
self.classifier = nn.Linear(fc_input_dim, num_classes)
else:
self.classifier = nn.Linear(fc_input_dim, num_classes)
else:
if modeltype.startswith('alexnet') or modeltype.startswith('vgg'):
output_dim = self.classifier[-1].weight.size(1) # 4096
self.classifier[-1] = nn.Linear(output_dim, num_classes)
else:
self.classifier = nn.Linear(self.representation_dim, num_classes)
index_before_freezed_layer = 0
if freezed_layer:
for m in self.features.children():
if index_before_freezed_layer < freezed_layer:
m = self._freeze(m)
index_before_freezed_layer += 1
def _freeze(self, modules):
for param in modules.parameters():
param.requires_grad = False
return modules
def get_model(modeltype, representation, num_classes, freezed_layer, pretrained=False):
_model = Newmodel(modeltype, representation, num_classes, freezed_layer, pretrained=pretrained)
return _model