-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
667 lines (569 loc) · 29.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import sys, os, argparse, time
import warnings
import numpy as np
import cv2
import shutil
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.multiprocessing as mp
import torch.nn.parallel
import torch.optim
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.autograd import Variable
import torch.utils.data
import torch.utils.data.distributed
import torch.utils.model_zoo as model_zoo
import torchvision
from torchvision import transforms
from headpose.hopenet import Hopenet
from headpose.mobilenet_v2 import MobileNetV2
from datasets import MyDatasets
from torch.utils.tensorboard import SummaryWriter
from datasets import utils
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
## training & optimizer
parser.add_argument('--epochs', dest='epochs', help='Maximum number of training epochs.',
default=5, type=int)
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--batch_size', dest='batch_size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', dest='lr', help='Base learning rate.',
default=0.001, type=float)
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
## distribution
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
# model seting
parser.add_argument('--alpha', dest='alpha', help='Regression loss coefficient.',
default=1, type=float)
parser.add_argument('--model', dest='model', help='model to use', default='resnet18', type=str)
parser.add_argument('--half_train', dest='half_train', action='store_true',
help='training with half precision')
parser.add_argument('--input_size', dest='input_size', help='Input size for CNN Network.',
default=112, type=int)
parser.add_argument('--resize', dest='resize', help='Resize the Input image for CNN Network.',
default=112, type=int)
parser.add_argument('--eps', dest='eps', help='eps for adam optimizer',
default=1e-8, type=float)
## dataset
parser.add_argument('--dataset', dest='dataset', help='Dataset type.', default='Pose_300W_LP', type=str)
parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.',
default='', type=str)
parser.add_argument('--json_path', dest='json_path', help='Directory path for image bboxes info.',
default='', type=str)
parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.',
default='', type=str)
parser.add_argument('--output_string', dest='output_string', help='String appended to output snapshots.', default = '', type=str)
parser.add_argument('--out_dir', default=None, type=str, help='output path of the checkpoint file')
parser.add_argument('--test_data_dir', dest='test_data_dir', help='Path to test dataset', default='', type=str)
parser.add_argument('--test_filename_list', dest='test_filename_list', help='Path to test file containing \
relative paths for test example.', default='', type=str)
parser.add_argument('--test_json_path', dest='test_json_path', help='Directory path for image bboxes info.',
default='', type=str)
parser.add_argument("--tensorboard", type=str, default=None, help="Tensorboard log directory")
args = parser.parse_args()
return args
minmum_loss = np.inf
def get_ignored_params(model):
# Generator function that yields ignored params.
b = [model.conv1, model.bn1, model.fc_finetune]
for i in range(len(b)):
for module_name, module in b[i].named_modules():
if 'bn' in module_name:
module.eval()
for name, param in module.named_parameters():
yield param
def get_ignored_params_mobilenetv2(model):
# Generator function that yields ignored params.
b = model.features[0]
for i in range(len(b)):
for module_name, module in b[i].named_modules():
print(module_name)
def get_non_ignored_params(model):
# Generator function that yields params that will be optimized.
b = [model.layer1, model.layer2, model.layer3, model.layer4]
# b = [model.layer3, model.layer4]
for i in range(len(b)):
for module_name, module in b[i].named_modules():
if 'bn' in module_name:
module.eval()
for name, param in module.named_parameters():
yield param
def get_fc_params(model):
# Generator function that yields fc layer params.
b = [model.fc_yaw, model.fc_pitch, model.fc_roll]
for i in range(len(b)):
for module_name, module in b[i].named_modules():
for name, param in module.named_parameters():
yield param
def load_filtered_state_dict(model, snapshot):
# By user apaszke from discuss.pytorch.org
model_dict = model.state_dict()
snapshot = {k: v for k, v in snapshot.items() if k in model_dict}
model_dict.update(snapshot)
model.load_state_dict(model_dict)
def loss_mean(loss):
loss_sum = 0
for l in loss:
loss_sum += l
return loss_sum / len(loss)
def main():
args = parse_args()
if not os.path.exists('checkpoint'):
os.makedirs('checkpoint')
outdir = os.path.join('checkpoint', args.out_dir)
isExists = os.path.exists(outdir)
if not isExists:
os.makedirs(outdir)
print('===> Path of %s is build'%(outdir))
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global minmum_loss
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# backbone structure
print ("===> Creating Hopenet model by '{}'".format(args.model))
if args.model == 'resnet50':
model = Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66)
elif args.model == 'resnet18':
model = Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66)
elif args.model == 'resnet152':
model = Hopenet(torchvision.models.resnet.Bottleneck, [3, 8, 36, 3], 66)
elif args.model == 'mobilenet_v2':
model = MobileNetV2(num_bins=66, width_mult=1.0)
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int(args.workers / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
model = torch.nn.DataParallel(model).cuda()
if args.half_train:
print('===> Training with Half Precision')
model = model.half()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
reg_criterion = nn.MSELoss().cuda(args.gpu)
if args.half_train:
criterion = criterion.half()
reg_criterion = reg_criterion.half()
# optimizer = torch.optim.SGD(model.parameters(), args.lr,
# momentum=args.momentum,
# weight_decay=args.weight_decay)
if args.model == 'mobilenet_v2':
optimizer = torch.optim.Adam(model.parameters(), lr = args.lr, eps=args.eps)
else:
# optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': 0},
# {'params': get_non_ignored_params(model), 'lr': args.lr},
# {'params': get_fc_params(model), 'lr': args.lr * 5}],
# lr = args.lr)
optimizer = torch.optim.Adam([{'params': get_ignored_params(model), 'lr': args.lr},
{'params': get_non_ignored_params(model), 'lr': args.lr},
{'params': get_fc_params(model), 'lr': args.lr * 5}],
lr = args.lr, eps=args.eps)
# optimizer = Adam16([{'params': get_ignored_params(model), 'lr': 0},
# {'params': get_non_ignored_params(model), 'lr': args.lr},
# {'params': get_fc_params(model), 'lr': args.lr * 5}],
# lr = args.lr )
# optionally resume from a checkpoint
if args.resume == '':
print("===> Trained without resume, load imagenet pretrained model: '{}'".format(args.model))
if args.model == 'resnet50':
load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet50-19c8e357.pth'))
elif args.model == 'resnet18':
load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/resnet18-5c106cde.pth'))
elif args.model == 'mobilenet_v2':
load_filtered_state_dict(model, model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth'))
else:
if os.path.isfile(args.resume):
print("===> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
minmum_loss = checkpoint['minmum_loss']
# if args.gpu is not None:
# # best_acc1 may be from a checkpoint from a different GPU
# minmum_loss = minmum_loss.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("===> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
else:
print("===> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
print ('===> Loading data.')
resize = args.resize
input_size = args.input_size
transformations = transforms.Compose([
transforms.Resize(resize),
#transforms.Resize((resize,resize)),
transforms.RandomCrop(input_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
test_transformations = transforms.Compose([
transforms.Resize(resize),
#transforms.Resize((resize,resize)),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
if args.dataset == 'Pose_300W_LP':
pose_dataset = MyDatasets.Pose_300W_LP(args.data_dir, args.filename_list, transformations)
elif args.dataset == 'Pose_300W_LP_random_ds':
pose_dataset = MyDatasets.Pose_300W_LP_random_ds(args.data_dir, args.filename_list, args.json_path, transformations)
elif args.dataset == 'Synhead':
pose_dataset = MyDatasets.Synhead(args.data_dir, args.filename_list, transformations)
elif args.dataset == 'AFLW2000':
pose_dataset = MyDatasets.AFLW2000(args.data_dir, args.filename_list, args.json_path, transformations)
elif args.dataset == 'BIWI':
pose_dataset = MyDatasets.BIWIDet(args.data_dir, args.filename_list, args.json_path, transformations)
elif args.dataset == 'AFLW':
pose_dataset = MyDatasets.AFLW(args.data_dir, args.filename_list, transformations)
elif args.dataset == 'AFLW_aug':
pose_dataset = MyDatasets.AFLW_aug(args.data_dir, args.filename_list, transformations)
elif args.dataset == 'AFW':
pose_dataset = MyDatasets.AFW(args.data_dir, args.filename_list, transformations)
elif args.dataset =='XMCTest':
pose_dataset = MyDatasets.XMCTestData(args.data_dir, args.data_dir, args.json_path, args.filename_list, transformations)
else:
print ('Error: not a valid dataset name')
sys.exit()
# data loader
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(pose_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(dataset=pose_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True, sampler=train_sampler)
test_pose_dataset = MyDatasets.AFLW2000(args.test_data_dir,
args.test_filename_list,
args.test_json_path,
transformations)
# test_pose_dataset = MyDatasets.XMCTestData(args.test_data_dir,
# args.test_data_dir,
# args.test_json_path,
# args.test_filename_list,
# test_transformations)
test_loader = torch.utils.data.DataLoader(dataset=test_pose_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers,
pin_memory=True)
print ('===> Ready to train network.')
if args.tensorboard is not None:
print("===> Use tensorboard")
train_writer = SummaryWriter(log_dir=args.tensorboard + "/" + "train")
val_writer = SummaryWriter(log_dir=args.tensorboard + "/" + "val")
if args.evaluate:
test_error = validate(test_loader, model, criterion, reg_criterion, args)
return
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
lr = adjust_learning_rate(optimizer, epoch, args)
print()
print("base_lr:{} \t adjust_lr:{} \t batch-size:{}".format(args.lr, lr, args.batch_size))
# train for one epoch
train_loss = train(train_loader, model, criterion, reg_criterion, optimizer, epoch, args)
train_loss_yaw, train_loss_pitch, train_loss_roll, train_loss_mae = train_loss
# evaluate on validation set
test_error = validate(test_loader, model, criterion, reg_criterion,args)
test_yaw_error, test_pitch_error, test_roll_error, test_mae_error = test_error
if args.tensorboard is not None:
train_writer.add_scalar("yaw_loss", train_loss_yaw, epoch)
train_writer.add_scalar("pitch_loss", train_loss_pitch, epoch)
train_writer.add_scalar("roll_loss", train_loss_roll, epoch)
train_writer.add_scalar("mean_loss", train_loss_mae, epoch)
val_writer.add_scalar("yaw_error", test_yaw_error, epoch)
val_writer.add_scalar("pitch_error", test_pitch_error, epoch)
val_writer.add_scalar("roll_error", test_roll_error, epoch)
val_writer.add_scalar("mean_error", test_mae_error, epoch)
# remember best acc@1 and save checkpoint
is_best = test_mae_error < minmum_loss
minmum_loss = min(test_mae_error, minmum_loss)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
save_checkpoint({
'epoch': epoch + 1,
'arch': args.model,
'state_dict': model.state_dict(),
'minmum_loss': minmum_loss,
'optimizer' : optimizer.state_dict(),
}, is_best, filename = os.path.join('checkpoint', args.out_dir, args.model + '_' + str(args.alpha) + '_' + str(epoch) + '.pth'), out_dir = args.out_dir)
def train(train_loader, model, criterion, reg_criterion, optimizer, epoch, args):
# LOG
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
yaw_loss = AverageMeter('Loss-Yaw', ':.4e')
pitch_loss = AverageMeter('Loss-Pitch', ':.4e')
roll_loss = AverageMeter('Loss-Roll', ':.4e')
mae = AverageMeter('MAE', ':.4e')
progress = ProgressMeter(len(train_loader), batch_time, data_time, yaw_loss,
pitch_loss, roll_loss, mae, prefix="Epoch: [{}]".format(epoch))
# Regression loss coefficient
alpha = args.alpha
if args.half_train:
alpha = torch.Tensor([[alpha]]).cuda(args.gpu).half()
alpha = alpha.item()
softmax = nn.Softmax(dim=1).cuda(args.gpu)
# form -99 to 102, every 3 degree generate a bin
idx_tensor = [idx for idx in range(66)]
idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(args.gpu)
if args.half_train:
idx_tensor = idx_tensor.half()
# switch to train mode
model.train()
end = time.time()
for i, (images, labels, cont_labels, name) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
labels = labels.cuda(args.gpu, non_blocking=True)
cont_labels = cont_labels.cuda(args.gpu, non_blocking=True)
if args.half_train:
#print("====> Images.cuda().half()")
images = images.half()
# labels = labels.half()
cont_labels = cont_labels.half()
# Binned labels
label_yaw = Variable(labels[:,0]).cuda(args.gpu, non_blocking=True)
label_pitch = Variable(labels[:,1]).cuda(args.gpu, non_blocking=True)
label_roll = Variable(labels[:,2]).cuda(args.gpu, non_blocking=True)
# Continuous labels
label_yaw_cont = Variable(cont_labels[:,0]).cuda(args.gpu, non_blocking=True)
label_pitch_cont = Variable(cont_labels[:,1]).cuda(args.gpu, non_blocking=True)
label_roll_cont = Variable(cont_labels[:,2]).cuda(args.gpu, non_blocking=True)
# Forward pass
# yaw : batch_size * 67
yaw, pitch, roll = model(images)
# Cross entropy loss
loss_yaw = criterion(yaw, label_yaw)
loss_pitch = criterion(pitch, label_pitch)
loss_roll = criterion(roll, label_roll)
# MSE loss
yaw_predicted = softmax(yaw)
pitch_predicted = softmax(pitch)
roll_predicted = softmax(roll)
## is an expection
## 计算期望
yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1) * 3 - 99
pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1) * 3 - 99
roll_predicted = torch.sum(roll_predicted * idx_tensor, 1) * 3 - 99
loss_reg_yaw = reg_criterion(yaw_predicted, label_yaw_cont)
loss_reg_pitch = reg_criterion(pitch_predicted, label_pitch_cont)
loss_reg_roll = reg_criterion(roll_predicted, label_roll_cont)
# Total loss
loss_yaw += alpha * loss_reg_yaw
loss_pitch += alpha * loss_reg_pitch
loss_roll += alpha * loss_reg_roll
loss_mae = (loss_yaw +loss_pitch+loss_roll)/3
# measure accuracy and record loss
yaw_loss.update(loss_yaw.item(), images.size(0))
pitch_loss.update(loss_pitch.item(), images.size(0))
roll_loss.update(loss_roll.item(),images.size(0))
mae.update(loss_mae.item(), images.size(0))
# compute gradient and do SGD step
loss_seq = [loss_yaw, loss_pitch, loss_roll]
grad_seq = [torch.ones(1).cuda(args.gpu) for _ in range(len(loss_seq))]
if args.half_train:
grad_seq = [torch.ones(1).cuda(args.gpu).half() for _ in range(len(loss_seq))]
optimizer.zero_grad()
torch.autograd.backward(loss_seq, grad_seq)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.print(i)
return yaw_loss.avg, pitch_loss.avg, roll_loss.avg, mae.avg
def validate(val_loader, model, criterion,reg_criterion, args):
# LOG
batch_time = AverageMeter('Time', ':6.3f')
test_yaw_error = AverageMeter('Error-Yaw', ':.4e')
test_pitch_error = AverageMeter('Error-Pitch', ':.4e')
test_roll_error = AverageMeter('Eroor-Roll', ':.4e')
test_mae = AverageMeter('MAE', ':.4e')
progress = ProgressMeter(len(val_loader), batch_time, test_yaw_error,
test_pitch_error, test_roll_error, test_mae, prefix="Test:")
idx_tensor = [idx for idx in range(66)]
idx_tensor = Variable(torch.FloatTensor(idx_tensor)).cuda(args.gpu)
if args.half_train:
idx_tensor = idx_tensor.half()
# switch to eval mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, labels, cont_labels, name) in enumerate(val_loader):
# measure data loading time
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
labels = labels.cuda(args.gpu, non_blocking=True)
cont_labels = cont_labels.cuda(args.gpu, non_blocking=True)
if args.half_train:
#print("====> Images.cuda().half()")
images = images.half()
cont_labels = cont_labels.half()
# Continuous labels
label_yaw_cont = Variable(cont_labels[:,0]).cuda(args.gpu, non_blocking=True)
label_pitch_cont = Variable(cont_labels[:,1]).cuda(args.gpu, non_blocking=True)
label_roll_cont = Variable(cont_labels[:,2]).cuda(args.gpu, non_blocking=True)
# Forward pass
yaw, pitch, roll = model(images)
# Binned predictions
_, yaw_bpred = torch.max(yaw.data, 1)
_, pitch_bpred = torch.max(pitch.data, 1)
_, roll_bpred = torch.max(roll.data, 1)
# Continuous predictions
yaw_predicted = F.softmax(yaw.data, dim=1)
pitch_predicted = F.softmax(pitch.data, dim=1)
roll_predicted = F.softmax(roll.data, dim=1)
yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1)* 3 - 99
pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1)* 3 - 99
roll_predicted = torch.sum(roll_predicted * idx_tensor, 1)* 3 - 99
# Mean absolute error
yaw_error = torch.sum(torch.abs(yaw_predicted - label_yaw_cont))
pitch_error = torch.sum(torch.abs(pitch_predicted - label_pitch_cont))
roll_error = torch.sum(torch.abs(roll_predicted - label_roll_cont))
mae = (yaw_error + pitch_error + roll_error) / 3
# measure accuracy and record loss
batch_size = images.size(0)
test_yaw_error.update(yaw_error.item()/batch_size , images.size(0))
test_pitch_error.update(pitch_error.item()/batch_size, images.size(0))
test_roll_error.update(roll_error.item()/batch_size, images.size(0))
test_mae.update(mae.item()/batch_size, images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.print(i)
# TODO: this should also be done with the ProgressMeter
print(' ***** test_yaw:{test_yaw_error.avg:.3f} test_pitch:{test_pitch_error.avg:.3f} test_roll:{test_roll_error.avg:.3f} test_mae:{test_mae.avg:.3f}'
.format(test_yaw_error=test_yaw_error, test_pitch_error=test_pitch_error, test_roll_error= test_roll_error, test_mae=test_mae))
return test_yaw_error.avg, test_pitch_error.avg, test_roll_error.avg, test_mae.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, *meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def print(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 8))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def save_checkpoint(state, is_best, filename, out_dir):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join('checkpoint', out_dir, 'model_best.pth'))
if __name__=='__main__':
main()