-
Notifications
You must be signed in to change notification settings - Fork 0
/
bayesianOptmimizationMaster.py
181 lines (156 loc) · 7.15 KB
/
bayesianOptmimizationMaster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
'''
Name: bayesianOptimizationMaster.py
Authors: Julian Berk and Vu Nguyen
Publication date:16/04/2018
Inputs:None
Outputs: Pickle files and plots containing the results from experiments run
Description: The master file for code used to generate the results for the
paper Exploration Enhanced Expected Improvement for Bayesian Optimization.
Most aspects of the algorithm can be altered from this file. See comments for
more details
'''
###############################################################################
import sys
sys.path.insert(0,'../../')
from prada_bayes_opt import PradaBayOptFn
import numpy as np
from prada_bayes_opt import auxiliary_functions
#from my_plot_gp import run_experiment
from prada_bayes_opt import functions
from prada_bayes_opt import real_experiment_function
from prada_bayes_opt.utility import export_results
import plot_results
import pickle
import random
import time
#import pickle
import warnings
import itertools
warnings.filterwarnings("ignore")
'''
***********************************IMPORTANT***********************************
The pickle_location variable below must be changed to the appropriate directory
in your system for the code to work.
'''
#pickle_location='..\..\..'
pickle_location="D:\OneDrive\Documents\PhD\Code\Bayesian\BO_with_E3I\pickleStorage"
###############################################################################
'''
Here the user can choose which functions to optimize. Just un-comment the
desired functions and set the desired dimensions with the dim parameter
in supported functions
'''
###############################################################################
myfunction_list=[]
myfunction_list.append(functions.doubleGaussian(dim=2))
#myfunction_list.append(functions.gaussian(dim=8))
#myfunction_list.append(functions.mixture(peaks=3))
#myfunction_list.append(functions.beale())
#myfunction_list.append(functions.forrester())
#myfunction_list.append(functions.rosenbrock())
#myfunction_list.append(functions.eggholder())
#myfunction_list.append(functions.franke())
#myfunction_list.append(functions.shubert())
#myfunction_list.append(functions.schwefel(dim=4))
#myfunction_list.append(functions.griewank(dim=3))
#myfunction_list.append(functions.levy(dim=5))
#myfunction_list.append(functions.branin())
#myfunction_list.append(functions.dropwave())
#myfunction_list.append(functions.sixhumpcamel())
#myfunction_list.append(functions.hartman_3d())
#myfunction_list.append(functions.ackley(input_dim=5))
#myfunction_list.append(functions.alpine1(input_dim=5))
#myfunction_list.append(functions.alpine2(input_dim=5))
#myfunction_list.append(functions.hartman_6d())
#myfunction_list.append(functions.alpine2(input_dim=10))
#myfunction_list.append(functions.gSobol(a=np.array([1,1,1,1,1,1,1,1,1,1])))
#myfunction_list.append(functions.gSobol(a=np.array([1,1,1,1,1,1,1,1,1,1,1,1])))
#myfunction_list.append(functions.gSobol(a=np.array([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1])))
#myfunction_list.append(real_experiment_function.SVR_function())
#myfunction_list.append(real_experiment_function.AlloyCooking_Profiling_3Steps())
#myfunction_list.append(real_experiment_function.Robot_BipedWalker())
#myfunction_list.append(real_experiment_function.DeepLearning_MLP_MNIST())
#myfunction_list.append(real_experiment_function.BayesNonMultilabelClassification())
#myfunction_list.append(real_experiment_function.BayesNonMultilabelClassificationEnron())
###############################################################################
'''
Here the user can choose which acquisition functions will be used. To select
an acquisition function, un-comment the "acq_type_list.append(temp)" after its
name. If you do not have any pickle files for the method and function, you will
also need to comment out the relevent section in plot_results.py.
'''
###############################################################################
acq_type_list=[]
temp={}
temp['name']='ei'
acq_type_list.append(temp)
temp={}
temp['name']='e3i'
acq_type_list.append(temp)
temp={}
temp['name']='ucb'
acq_type_list.append(temp)
temp={}
temp['name']='ei_zeta'
temp['zeta']=0.01
acq_type_list.append(temp)
mybatch_type_list={'Single'}
###############################################################################
'''
#1 seed is used along with the experiment number as a seed to randomly generate
the initial points. Setting this as a constant will allow results to be
reproduced while making it random will let each set of runs use a different
set of initial points.
#2 num_initial_points controls the number of random sampled points each
experiment will start with.
#3 max_iterations controls the number of iterations of Bayesian optimization
that will run on the function. This must be controlled with iteration_factor
for compatability with the print function.
#4 num_repeats controls the number of repeat experiments.
5# acq_params['optimize_gp'] If this is 1, then the lengthscale will be
determined by maximum likelihood every 15 samples. If any other value, no
lengthscale adjustement will be made
'''
###############################################################################
#seed=np.random.randint(1,100) #1
seed=1
print("Seed of {} used".format(seed))
for idx, (myfunction,acq_type,mybatch_type,) in enumerate(itertools.product(myfunction_list,acq_type_list,mybatch_type_list)):
func=myfunction.func
mybound=myfunction.bounds
yoptimal=myfunction.fmin*myfunction.ismax
acq_type['dim']=myfunction.input_dim
num_initial_points=myfunction.input_dim+1 #2
iteration_factor=20 #3
max_iterations=iteration_factor*myfunction.input_dim
num_repeats=10 #4
GAP=[0]*num_repeats
ybest=[0]*num_repeats
Regret=[0]*num_repeats
MyTime=[0]*num_repeats
MyOptTime=[0]*num_repeats
ystars=[0]*num_repeats
func_params={}
func_params['bounds']=myfunction.bounds
func_params['f']=func
acq_params={}
acq_params['acq_func']=acq_type
acq_params['optimize_gp']=0 #5if 1 then maximum likelihood lenghscale selection will be used
for ii in range(num_repeats):
gp_params = {'theta':0.05,'noise_delta':0.001} # Kernel parameters for the square exponential kernel
baysOpt=PradaBayOptFn(gp_params,func_params,acq_params,experiment_num=ii,seed=seed)
ybest[ii],MyTime[ii]=auxiliary_functions.run_experiment(baysOpt,gp_params,
yoptimal,n_init=num_initial_points,NN=max_iterations)
MyOptTime[ii]=baysOpt.time_opt
ystars[ii]=baysOpt.ystars
Score={}
Score["GAP"]=GAP
Score["ybest"]=ybest
Score["ystars"]=ystars
Score["Regret"]=Regret
Score["MyTime"]=MyTime
Score["MyOptTime"]=MyOptTime
export_results.print_result_ystars(baysOpt,myfunction,Score,mybatch_type,acq_type,toolbox='PradaBO')
#Plots the results. Comment out to supress plots.
for idx, (myfunction) in enumerate(itertools.product(myfunction_list)):
plot_results.plot(myfunction[0].name,myfunction[0].input_dim,iteration_factor,pickle_location)