-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClusterPerceptron.py
196 lines (166 loc) · 7.62 KB
/
ClusterPerceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
###################
# A cluster classification learning perceptron
# Good to use for understanding how a perceptron works.
# Displays decision boundary
# Author: John Berroa
###################
import numpy as np
import matplotlib.pyplot as plt
from numpy.random import multivariate_normal as multNorm
class ClusterPerceptron:
"""
Creates a perceptron that learns to linearly separate two clusters
"""
def __init__(self, data, epsilon=.0075):
self.epsilon = epsilon # initialized with very low learning rate in order to visualize learning process
self.dimensions = 2
self.training_set = data[0]
self.test_set = data[1]
self.training_size = len(self.training_set)
self.test_size = len(self.test_set)
self.training_labels = data[2]
self.test_labels = data[3]
self.weights = np.random.random(self.dimensions + 1) # +1 because of adding a bias
print("Perceptron initialized with weights:\nW0 = {} W1 = {} W2 = {}"
.format(round(self.weights[0],2), round(self.weights[1],2), round(self.weights[2],2)))
def threshold(self, activation):
"""
Simple step function threshold
:param activation:
:return 1 or 0:
"""
if activation >= 0:
return 1
else:
return 0
def infer(self, datapoint):
"""
Passes datapoint through the network to get an answer
:param datapoint:
:return output: the answer of the inference
"""
activation = np.dot(self.weights, datapoint[:-1])
output = self.threshold(activation)
return output
def learn(self, output, label, datapoint):
"""
Implements the perceptron learning rule
:param output:
:param label:
:param datapoint:
"""
delta_w = self.epsilon * ((label - output) * datapoint[:-1])
self.weights += delta_w # perceptron learning rule
def train(self, epochs=10):
"""
Trains the perceptron for a certain amount of epochs, then tests it
:param epochs:
"""
for e in range(epochs):
self.test(e, epochs)
for i, step in enumerate(self.training_set):
output = self.infer(step)
self.learn(output, self.training_set[i][-1], step)
self.test(epochs, epochs)
def test(self, e, e2):
"""
Tests the performance of the current weights against the test set and then prints the result
:param e: these just pass through into the plotting function; they are the current epoch and epoch length
:param e2: ^ see above
:return:
"""
print("Perceptron trained to weights:\nW0 = {} W1 = {} W2 = {}"
.format(round(self.weights[0], 2), round(self.weights[1], 2), round(self.weights[2], 2)))
results = []
for i, step in enumerate(self.test_set):
output = self.infer(step)
if self.test_set[i][-1] == output:
results.append(1)
else:
results.append(0)
correct_results = np.count_nonzero(results)
performance = correct_results / self.test_size
print("Test performance after training: {}%\n----".format(performance * 100))
self.plot_decision_boundary(e, e2)
return performance
def plot_decision_boundary(self, epoch, epoch_length):
"""
Plots the decision boundary and data for both the training and test datasets
:param epoch: the current epoch
:param epoch_length: the total number of epochs
:return:
"""
plt.figure(1)
plt.subplot(121)
y_point = (0, (-self.weights[0] / self.weights[2]))
x_point = ((-self.weights[0] / self.weights[1]), 0)
try:
slope = (y_point[1] - x_point[1]) / (y_point[0] - x_point[0]) # will not work if x and y intercepts are 0
except ZeroDivisionError:
print("X and Y intercepts are both zero. Due to the way slope is calculated, this causes a division by zero. Sorry.")
y_out = lambda points: slope * points
x = np.linspace(-10, 10, 100)
plt.plot(x, y_out(x) + y_point[1], 'g--', linewidth=3, alpha=epoch / epoch_length if epoch < epoch_length else 1)
# plot the training data to see how well the learning went
if epoch == epoch_length: # plot each cluster in a different color
for i in range(len(self.training_set)):
if self.training_set[i][-1] == 0:
plt.scatter(self.training_set[i][1], self.training_set[i][2], color='red')
elif self.training_set[i][-1] == 1:
plt.scatter(self.training_set[i][1], self.training_set[i][2], color='blue')
else:
raise NotImplementedError("This condition should not happen; if it did, check your input data for problems")
plt.ylim([-6, 6])
plt.xlim([-6, 3])
plt.title("Cluster Perceptron - Training Set")
plt.xlabel("X")
plt.ylabel("Y")
# plot the test data to see if it generalizes
plt.subplot(122)
plt.plot(x, y_out(x) + y_point[1], 'g--', linewidth=3, alpha=epoch / epoch_length if epoch < epoch_length else 1)
for i in range(len(self.test_set)):
if self.test_set[i][-1] == 0:
plt.scatter(self.test_set[i][1], self.test_set[i][2], color='red')
elif self.test_set[i][-1] == 1:
plt.scatter(self.test_set[i][1], self.test_set[i][2], color='blue')
else:
raise NotImplementedError("This condition should not happen; if it did, check your input data for problems")
plt.ylim([-6, 6])
plt.xlim([-6, 3])
plt.title("Cluster Perceptron - Test Set")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
def generate_data(size):
"""
Generates example data to test the perceptron. However, any labeled linearly separable data will work.
:return training_set, test_set, training_labels, test_labels:
"""
# generate training and test sets, and put them into the plot
training_set = np.vstack((multNorm([2,2],[[0.1, 0], [0, 1]],size), multNorm([-2,-4],[[1, 0], [0, 0.3]],size)))
test_set = np.vstack((multNorm([2,2],[[0.1, 0], [0, 1]],size), multNorm([-2,-4],[[1, 0], [0, 0.3]],size)))
# generate training and test labels, and bias
training_labels = np.zeros(size)
training_labels = np.concatenate((training_labels, np.ones(size)))
test_labels = np.zeros(size)
test_labels = np.concatenate((test_labels, np.ones(size)))
bias = np.ones(size * 2) # because size is size of one cluster
# add dimension, i.e. (200,) -> (200,1)
training_labels = np.expand_dims(training_labels, axis=1)
test_labels = np.expand_dims(test_labels, axis=1)
bias = np.expand_dims(bias, axis=1)
# concatenate labels onto data
training_set = np.concatenate((training_set, training_labels), axis=1)
test_set = np.concatenate((test_set, test_labels), axis=1)
training_set = np.concatenate((bias, training_set), axis=1)
test_set = np.concatenate((bias, test_set), axis=1)
# shuffle so that it isn't ordered by label
np.random.shuffle(training_set)
np.random.shuffle(test_set)
return training_set, test_set, training_labels, test_labels
if __name__ == "__main__":
data_size = 100 # data is two times this size
t,tst,tl,tstl = generate_data(data_size)
data = (t, tst, tl, tstl)
perceptron = ClusterPerceptron(data)
perceptron.train(100)