-
Notifications
You must be signed in to change notification settings - Fork 35
/
test.py
170 lines (145 loc) · 5.65 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import os
import torch
import random
import numpy as np
import time
import json
from data import (
create_dataloader,
create_dataset,
create_dataset_temporal,
create_iterable_dataloader,
list_test_sets,
)
from models import create_model
from util.parser import get_opt
from util.util import MAX_INT
from models.modules.diffusion_utils import set_new_noise_schedule
def launch_testing(opt, main_opt):
rank = 0
opt.jg_dir = os.path.join("/".join(__file__.split("/")[:-1]))
opt.use_cuda = torch.cuda.is_available() and opt.gpu_ids and opt.gpu_ids[0] >= 0
if opt.use_cuda:
torch.cuda.set_device(opt.gpu_ids[rank])
opt.isTrain = False
model = create_model(opt, rank) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
all_test_sets = list_test_sets(opt)
for test_set in all_test_sets:
testset = create_dataset(opt, phase="test", name=test_set)
print("The number of testing images = %d" % len(testset))
opt.num_test_images = len(testset)
opt.train_nb_img_max_fid = min(opt.train_nb_img_max_fid, len(testset))
dataloader_test = create_dataloader(
opt, rank, testset, batch_size=opt.test_batch_size
) # create a dataset given opt.dataset_mode and other options
use_temporal = ("temporal" in opt.D_netDs) or opt.train_temporal_criterion
if use_temporal:
testset_temporal = create_dataset_temporal(opt, phase="test")
dataloader_test_temporal = create_iterable_dataloader(
opt, rank, testset_temporal, batch_size=opt.test_batch_size
)
else:
dataloader_test_temporal = None
# sampling options
if main_opt.sampling_steps is not None:
model.netG_A.denoise_fn.model.beta_schedule["test"][
"n_timestep"
] = main_opt.sampling_steps
if main.opt.model_type == "palette":
set_new_noise_schedule(model.netG_A.denoise_fn.model, "test")
if main_opt.sampling_method is not None:
model.netG_A.set_new_sampling_method(main_opt.sampling_method)
if main_opt.ddim_num_steps is not None:
model.ddim_num_steps = main_opt.ddim_num_steps
if main_opt.ddim_eta is not None:
model.ddim_eta = main_opt.ddim_eta
model.use_temporal = use_temporal
model.eval()
if opt.use_cuda:
model.single_gpu()
model.init_metrics(dataloader_test)
if use_temporal:
dataloaders_test = zip(dataloader_test, dataloader_test_temporal)
else:
dataloaders_test = zip(dataloader_test)
epoch = "test"
total_iters = "test"
with torch.no_grad():
model.compute_metrics_test(dataloaders_test, epoch, total_iters)
metrics = model.get_current_metrics([""])
for metric, value in metrics.items():
print(f"{metric}: {value}")
metrics_dir = os.path.join(opt.test_model_dir, "metrics")
os.makedirs(metrics_dir, exist_ok=True)
metrics_file = os.path.join(
metrics_dir, time.strftime("%Y%m%d-%H%M%S") + ".json"
)
with open(metrics_file, "w") as f:
f.write(json.dumps(metrics, indent=4))
print("metrics written to:", metrics_file)
if __name__ == "__main__":
main_parser = argparse.ArgumentParser()
main_parser.add_argument(
"--test_model_dir", type=str, required=True, help="path to model directory"
)
main_parser.add_argument(
"--test_epoch",
type=str,
default="latest",
help="which epoch to load? set to latest to use latest cached model",
)
main_parser.add_argument(
"--test_metrics_list",
type=str,
nargs="*",
choices=["FID", "KID", "MSID", "PSNR", "LPIPS", "SSIM"],
default=["FID", "KID", "MSID", "PSNR", "LPIPS"],
)
main_parser.add_argument(
"--test_nb_img",
type=int,
default=MAX_INT,
help="Number of samples to compute metrics. If the dataset directory contains more, only a subset is used.",
)
main_parser.add_argument(
"--test_batch_size", type=int, default=1, help="input batch size"
)
main_parser.add_argument(
"--test_seed", type=int, default=42, help="seed to use for tests"
)
main_parser.add_argument(
"--sampling_steps", type=int, help="number of sampling steps"
)
main_parser.add_argument(
"--sampling_method",
type=str,
choices=["ddpm", "ddim"],
help="choose the sampling method between ddpm and ddim",
)
main_parser.add_argument(
"--ddim_num_steps",
type=int,
help="number of steps for ddim sampling method",
)
main_parser.add_argument(
"--ddim_eta",
type=float,
help="eta parameter for ddim variance",
)
main_opt, remaining_args = main_parser.parse_known_args()
main_opt.config_json = os.path.join(main_opt.test_model_dir, "train_config.json")
opt = get_opt(main_opt, remaining_args)
# override global options with local test options
opt.train_compute_metrics_test = True
opt.test_model_dir = main_opt.test_model_dir
opt.train_epoch = main_opt.test_epoch
opt.train_metrics_list = main_opt.test_metrics_list
opt.train_nb_img_max_fid = main_opt.test_nb_img
opt.test_batch_size = main_opt.test_batch_size
opt.alg_diffusion_generate_per_class = False
random.seed(main_opt.test_seed)
torch.manual_seed(main_opt.test_seed)
np.random.seed(main_opt.test_seed)
launch_testing(opt, main_opt)