-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_story_rgb_bbox_01.py
166 lines (144 loc) · 6.37 KB
/
eval_story_rgb_bbox_01.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
Project:
Author:
Date:
Description:
From one image saved in .png, the script opens that image and evaluates it using an object detection model.
Example based on bounding box detection, in which the model predicts something and an image is showed.
With label prediction in rectangle.
1) Load a RGB image
2) Define an object detector model fasterrcnn_resnet50_fpn
3) Evaluate RGB image.
Codes based on:
* https://pytorch.org/vision/main/auto_examples/plot_visualization_utils.html
* https://debuggercafe.com/an-introduction-to-pytorch-visualization-utilities/
Use:
"""
import os
import time
import torch
import numpy as np
import warnings
warnings.filterwarnings("ignore",
category=UserWarning) # https://pytorch.org/blog/introducing-torchvision-new-multi-weight-support-api/
# Managing images formats
import torchvision.transforms.functional as F
from torchvision.io import read_image
from PIL import Image
# deep learning models
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from torchvision import transforms as transforms
# Drawing on the screen
from torchvision.utils import draw_bounding_boxes
from helpers.helper_examples import COCO_INSTANCE_CATEGORY_NAMES
from helpers.helper_examples import show_one_image
from helpers.helper_examples import merge_masks
from helpers.helper_examples import read_transform_return
def main_bbox_pennfundanped():
print('------------------------------------')
print('Example BBOX with PennFundanPed dataset')
print('------------------------------------')
main_path_project = os.path.abspath('.')
# -------------------------------------------
# Datasets
# -------------------------------------------
dataset_folder = os.path.join('dataset', 'story_rgb') # YOUR_DATASET HERE
path_dataset = os.path.join(main_path_project, dataset_folder)
path_images_folder = 'images'
path_dataset_images = os.path.join(path_dataset, path_images_folder)
# -------------------------------------------
# Open image with Pillow.Image.open()
# -------------------------------------------
# data about image to evaluate here, open with Pillow
img_to_eval_name = '20210927_114012_k_r2_e_000_150_138_2_0_C.png'
path_img_to_eval = os.path.join(path_dataset_images, img_to_eval_name)
p_img_to_eval = Image.open(path_img_to_eval) # {PngImageFile}
# ------------------------------------------
# Model initialization for object prediction
# -------------------------------------------
# loading the trained model only once to reduce time
score_threshold = 0.8
start_time_model_load = time.time()
device_selected = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = fasterrcnn_resnet50_fpn(pretrained=True,
progress=False) # (pretrained=True, min_size=800) # todo: put parameters in variable
model.to(device_selected)
model.eval() # enabling evaluation mode
end_time_model_load = time.time()
# -------------------------------------
# Image evaluation with model
# -------------------------------------
# evaluation inside the object detector model, iterative task
start_time_eval = time.time() # this is the evaluation
int_input, tensor_input = read_transform_return(p_img_to_eval)
predictions_model = model(tensor_input.to(device_selected))
end_time_eval = time.time()
# TODO: add intermediate layer here
# -------------------------------------
# Managing prediction, making something here (filtering, extracting)
# -------------------------------------
pred_boxes = predictions_model[0]['boxes'].detach().cpu().numpy()
pred_scores = predictions_model[0]['scores'].detach().cpu().numpy()
pred_labels = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in predictions_model[0]['labels'].cpu().numpy()]
# -------------------------------------
# Filtering predictions according to rules
# -------------------------------------
boxes_filtered = pred_boxes[pred_scores >= score_threshold].astype(np.int32)
labels_filtered = pred_labels[:len(boxes_filtered)]
# -------------------------------------
# -------------------------------------
# It displays the results on the screen according to the colours.
# -------------------------------------
colours = np.random.randint(0, 255, size=(len(boxes_filtered), 3))
colours_to_draw = [tuple(color) for color in colours]
result_with_boxes = draw_bounding_boxes(
image=int_input,
boxes=torch.tensor(boxes_filtered), width=1,
colors=colours_to_draw,
labels=labels_filtered,
fill=True # this complete fill in bounding box
)
# show_one_image(result_with_boxes) # optional if there are other transformations
p_result_with_boxes = F.to_pil_image(result_with_boxes)
p_result_with_boxes.show()
# -------------------------------------
# Display data on screen
# -------------------------------------
total_time_model_load = end_time_model_load - start_time_model_load
total_time_eval = end_time_eval - start_time_eval
h, w = p_img_to_eval.size
print('------------------------------------')
print(f'Main parameters')
print(f'path_dataset_images={path_dataset_images}')
print(f'path_img_to_evaluate_01={path_img_to_eval}')
print(f'Image size width={w} height={h}')
print(f'device_selected={device_selected}')
print(f'score_threshold={score_threshold}')
print(f'model={type(model).__name__}')
print(f'total_time_model_load={total_time_model_load}')
print(f'total_time_eval={total_time_eval}')
if __name__ == '__main__':
print('Testing BBOX object detector')
main_bbox_pennfundanped()
pass
# -------------------------------------------
# Visualizing bounding boxes
# -------------------------------------------
# boxes = torch.tensor([[50, 50, 100, 200], [210, 150, 350, 430]], dtype=torch.float)
# colors = ["blue", "yellow"]
# img_bbox = draw_bounding_boxes(image_01, boxes, colors=colors, width=5)
# show(img_bbox)
# boxes = torch.tensor([
# [135, 50, 210, 365],
# [210, 59, 280, 370],
# [300, 240, 375, 380]
# ])
# colors = ['red', 'red', 'green']
# result = draw_bounding_boxes(
# image=image_01,
# boxes=boxes,
# colors=colors,
# width=3
# )
# show(result)
####################################