-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path08 Texture Cubemap.kt
586 lines (465 loc) · 21.3 KB
/
08 Texture Cubemap.kt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/*
* Vulkan Example - Cube map texture loading and displaying
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
package vulkan.basics
import gli_.gli
import glm_.L
import glm_.f
import glm_.func.rad
import glm_.glm
import glm_.mat4x4.Mat4
import glm_.vec3.Vec3
import org.lwjgl.system.MemoryUtil.*
import vkk.*
import vulkan.assetPath
import vulkan.base.*
fun main(args: Array<String>) {
TextureCubemap().apply {
setupWindow()
initVulkan()
prepare()
renderLoop()
destroy()
}
}
private class TextureCubemap : VulkanExampleBase() {
var displaySkybox = true
val cubeMap = Texture()
// Vertex layout for the models
val vertexLayout = VertexLayout(
VertexComponent.POSITION,
VertexComponent.NORMAL,
VertexComponent.UV)
object models {
val skybox = Model()
val objects = ArrayList<Model>()
var objectIndex = 0
}
object uniformBuffers {
val `object` = Buffer()
val skybox = Buffer()
}
object uboVS : Bufferizable() {
var projection = Mat4()
@Order(1)
var model = Mat4()
@Order(2)
var lodBias = 0f
}
object pipelines {
var skybox = VkPipeline (NULL)
var reflect = VkPipeline(NULL)
}
object descriptorSets {
var `object` = VkDescriptorSet (NULL)
var skybox = VkDescriptorSet (NULL)
}
var pipelineLayout = VkPipelineLayout(NULL)
var descriptorSetLayout = VkDescriptorSetLayout(NULL)
val objectNames = ArrayList<String>()
init {
zoom = -4f
rotationSpeed = 0.25f
rotation(-7.25f, -120f, 0f)
title = "Cube map textures"
// settings.overlay = true
}
override fun destroy() {
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
device.apply {
// Clean up texture resources
destroyImageView(cubeMap.view)
destroyImage(cubeMap.image)
destroySampler(cubeMap.sampler)
freeMemory(cubeMap.deviceMemory)
destroyPipeline(pipelines.skybox)
destroyPipeline(pipelines.reflect)
destroyPipelineLayout(pipelineLayout)
destroyDescriptorSetLayout(descriptorSetLayout)
}
for (model in models.objects)
model.destroy()
models.skybox.destroy()
uniformBuffers.`object`.destroy()
uniformBuffers.skybox.destroy()
super.destroy()
}
// Enable physical device features required for this example
override fun getEnabledFeatures() {
if (deviceFeatures.samplerAnisotropy)
enabledFeatures.samplerAnisotropy = true
when {
deviceFeatures.textureCompressionBC -> enabledFeatures.textureCompressionBC = true
deviceFeatures.textureCompressionASTC_LDR -> enabledFeatures.textureCompressionASTC_LDR = true
deviceFeatures.textureCompressionETC2 -> enabledFeatures.textureCompressionETC2 = true
}
}
fun loadCubemap(filename: String, format: VkFormat, forceLinearTiling: Boolean) {
val texCube = gli_.TextureCube(gli.load(filename))
assert(texCube.notEmpty())
cubeMap.size(texCube.extent())
cubeMap.mipLevels = texCube.levels()
// Create a host-visible staging buffer that contains the raw image data
val bufferCreateInfo = vk.BufferCreateInfo {
size = VkDeviceSize(texCube.size.L)
// This buffer is used as a transfer source for the buffer copy
usage = VkBufferUsage.TRANSFER_SRC_BIT.i
sharingMode = VkSharingMode.EXCLUSIVE
}
val stagingBuffer = device createBuffer bufferCreateInfo
// Get memory requirements for the staging buffer (alignment, memory type bits)
val memReqs = device getBufferMemoryRequirements stagingBuffer
val memAllocInfo = vk.MemoryAllocateInfo {
allocationSize = memReqs.size
// Get memory type index for a host visible buffer
memoryTypeIndex = vulkanDevice.getMemoryType(memReqs.memoryTypeBits, VkMemoryProperty.HOST_VISIBLE_BIT or VkMemoryProperty.HOST_COHERENT_BIT)
}
val stagingMemory = device allocateMemory memAllocInfo
device.bindBufferMemory(stagingBuffer, stagingMemory)
// Copy texture data into staging buffer
device.mappingMemory(stagingMemory, VkDeviceSize(0), memReqs.size) { data ->
memCopy(memAddress(texCube.data()), data, texCube.size.L)
}
// Create optimal tiled target image
val imageCreateInfo = vk.ImageCreateInfo {
imageType = VkImageType.`2D`
this.format = format
mipLevels = cubeMap.mipLevels
samples = VkSampleCount.`1_BIT`
tiling = VkImageTiling.OPTIMAL
sharingMode = VkSharingMode.EXCLUSIVE
initialLayout = VkImageLayout.UNDEFINED
extent.set(cubeMap.size.x, cubeMap.size.y, 1)
usage = VkImageUsage.TRANSFER_DST_BIT or VkImageUsage.SAMPLED_BIT
// Cube faces count as array layers in Vulkan
arrayLayers = 6
// This flag is required for cube map images
flags = VkImageCreate.CUBE_COMPATIBLE_BIT.i
}
cubeMap.image = device createImage imageCreateInfo
device.getImageMemoryRequirements(cubeMap.image, memReqs)
memAllocInfo.allocationSize = memReqs.size
memAllocInfo.memoryTypeIndex = vulkanDevice.getMemoryType(memReqs.memoryTypeBits, VkMemoryProperty.DEVICE_LOCAL_BIT)
cubeMap.deviceMemory = device allocateMemory memAllocInfo
device.bindImageMemory(cubeMap.image, cubeMap.deviceMemory)
val copyCmd = createCommandBuffer(VkCommandBufferLevel.PRIMARY, true)
// Setup buffer copy regions for each face including all of it's miplevels
val bufferCopyRegions = vk.BufferImageCopy(6 * cubeMap.mipLevels)
var offset = VkDeviceSize(0)
for (face in 0..5)
for (level in 0 until cubeMap.mipLevels) {
bufferCopyRegions[face * cubeMap.mipLevels + level].apply {
imageSubresource.apply {
aspectMask = VkImageAspect.COLOR_BIT.i
mipLevel = level
baseArrayLayer = face
layerCount = 1
}
val extent = texCube[face][level].extent()
imageExtent.set(extent.x, extent.y, 1)
bufferOffset = offset
}
// Increase offset into staging buffer for next level / face
offset += texCube[face][level].size
}
// Image barrier for optimal image (target)
// Set initial layout for all array layers (faces) of the optimal (target) tiled texture
val subresourceRange = vk.ImageSubresourceRange {
aspectMask = VkImageAspect.COLOR_BIT.i
baseMipLevel = 0
levelCount = cubeMap.mipLevels
layerCount = 6
}
tools.setImageLayout(
copyCmd,
cubeMap.image,
VkImageLayout.UNDEFINED,
VkImageLayout.TRANSFER_DST_OPTIMAL,
subresourceRange)
// Copy the cube map faces from the staging buffer to the optimal tiled image
copyCmd.copyBufferToImage(
stagingBuffer,
cubeMap.image,
VkImageLayout.TRANSFER_DST_OPTIMAL,
bufferCopyRegions)
// Change texture image layout to shader read after all faces have been copied
cubeMap.imageLayout = VkImageLayout.SHADER_READ_ONLY_OPTIMAL
tools.setImageLayout(
copyCmd,
cubeMap.image,
VkImageLayout.TRANSFER_DST_OPTIMAL,
cubeMap.imageLayout,
subresourceRange)
super.flushCommandBuffer(copyCmd, queue, true)
// Create sampler
val sampler = vk.SamplerCreateInfo {
minMagFilter = VkFilter.LINEAR
mipmapMode = VkSamplerMipmapMode.LINEAR
addressModeUVW = VkSamplerAddressMode.CLAMP_TO_EDGE
mipLodBias = 0f
compareOp = VkCompareOp.NEVER
minLod = 0f
maxLod = cubeMap.mipLevels.f
borderColor = VkBorderColor.FLOAT_OPAQUE_WHITE
maxAnisotropy = 1f
}
if (vulkanDevice.features.samplerAnisotropy) {
sampler.maxAnisotropy = vulkanDevice.properties.limits.maxSamplerAnisotropy
sampler.anisotropyEnable = true
}
cubeMap.sampler = device createSampler sampler
// Create image view
val view = vk.ImageViewCreateInfo {
// Cube map view type
viewType = VkImageViewType.CUBE
this.format = format
components(VkComponentSwizzle.R, VkComponentSwizzle.G, VkComponentSwizzle.B, VkComponentSwizzle.A)
this.subresourceRange.apply {
set(VkImageAspect.COLOR_BIT.i, 0, 1, 0, 1)
// 6 array layers (faces)
layerCount = 6
// Set number of mip levels
levelCount = cubeMap.mipLevels
}
image = cubeMap.image
}
cubeMap.view = device createImageView view
// Clean up staging resources
device freeMemory stagingMemory
device destroyBuffer stagingBuffer
}
fun loadTextures() {
// Vulkan core supports three different compressed texture formats
// As the support differs between implemementations we need to check device features and select a proper format and file
val (filename, format) = when {
deviceFeatures.textureCompressionBC -> "cubemap_yokohama_bc3_unorm.ktx" to VkFormat.BC2_UNORM_BLOCK
deviceFeatures.textureCompressionASTC_LDR -> "cubemap_yokohama_astc_8x8_unorm.ktx" to VkFormat.ASTC_8x8_UNORM_BLOCK
deviceFeatures.textureCompressionETC2 -> "cubemap_yokohama_etc2_unorm.ktx" to VkFormat.ETC2_R8G8B8_UNORM_BLOCK
else -> tools.exitFatal("Device does not support any compressed texture format!", ERROR_FEATURE_NOT_PRESENT)
}
loadCubemap("$assetPath/textures/$filename", format, false)
}
override fun buildCommandBuffers() {
val cmdBufInfo = vk.CommandBufferBeginInfo()
val clearValues = vk.ClearValue(2).also {
it[0].color(defaultClearColor)
it[1].depthStencil.set(1f, 0)
}
val renderPassBeginInfo = vk.RenderPassBeginInfo {
renderPass = this@TextureCubemap.renderPass
renderArea.offset.set(0, 0)
renderArea.extent.set(size.x, size.y)
this.clearValues = clearValues
}
for (i in drawCmdBuffers.indices) {
// Set target frame buffer
renderPassBeginInfo.framebuffer(frameBuffers[i].L) // TODO BUG
drawCmdBuffers[i].apply {
begin(cmdBufInfo)
beginRenderPass(renderPassBeginInfo, VkSubpassContents.INLINE)
setViewport(size)
setScissor(size)
// Skybox
if (displaySkybox) {
bindDescriptorSets(VkPipelineBindPoint.GRAPHICS, pipelineLayout, descriptorSets.skybox)
bindVertexBuffers(0, models.skybox.vertices.buffer)
bindIndexBuffer(models.skybox.indices.buffer, VkDeviceSize(0), VkIndexType.UINT32)
bindPipeline(VkPipelineBindPoint.GRAPHICS, pipelines.skybox)
drawIndexed(models.skybox.indexCount, 1, 0, 0, 0)
}
// 3D object
bindDescriptorSets(VkPipelineBindPoint.GRAPHICS, pipelineLayout, descriptorSets.`object`)
bindVertexBuffers(models.objects[models.objectIndex].vertices.buffer)
bindIndexBuffer(models.objects[models.objectIndex].indices.buffer, VkDeviceSize(0), VkIndexType.UINT32)
bindPipeline(VkPipelineBindPoint.GRAPHICS, pipelines.reflect)
drawIndexed(models.objects[models.objectIndex].indexCount, 1, 0, 0, 0)
drawUI()
endRenderPass()
end()
}
}
}
fun loadAssets() {
// Skybox
models.skybox.loadFromFile("$assetPath/models/cube.obj", vertexLayout, 0.05f, vulkanDevice, queue)
// Objects
val filenames = listOf("sphere.obj", "teapot.dae", "torusknot.obj")
objectNames += listOf("Sphere", "Teapot", "Torusknot", "Venus")
for (file in filenames) {
val model = Model()
val scale = 0.05f * if (file == "venus.fbx") 3f else 1f
model.loadFromFile("$assetPath/models/$file", vertexLayout, scale, vulkanDevice, queue)
models.objects += model
}
}
fun setupDescriptorPool() {
val poolSizes = vk.DescriptorPoolSize(
VkDescriptorType.UNIFORM_BUFFER, 2,
VkDescriptorType.COMBINED_IMAGE_SAMPLER, 2)
val descriptorPoolInfo = vk.DescriptorPoolCreateInfo(poolSizes, 2)
descriptorPool = device createDescriptorPool descriptorPoolInfo
}
fun setupDescriptorSetLayout() {
val setLayoutBindings = vk.DescriptorSetLayoutBinding(
// Binding 0 : Vertex shader uniform buffer
VkDescriptorType.UNIFORM_BUFFER, VkShaderStage.VERTEX_BIT.i, 0,
// Binding 1 : Fragment shader image sampler
VkDescriptorType.COMBINED_IMAGE_SAMPLER, VkShaderStage.FRAGMENT_BIT.i, 1)
val descriptorLayout = vk.DescriptorSetLayoutCreateInfo(setLayoutBindings)
descriptorSetLayout = device createDescriptorSetLayout descriptorLayout
val pipelineLayoutCreateInfo = vk.PipelineLayoutCreateInfo(descriptorSetLayout)
pipelineLayout = device createPipelineLayout pipelineLayoutCreateInfo
}
fun setupDescriptorSets() {
// Image descriptor for the cube map texture
val textureDescriptor = vk.DescriptorImageInfo(cubeMap.sampler, cubeMap.view, cubeMap.imageLayout)
val allocInfo = vk.DescriptorSetAllocateInfo(descriptorPool, descriptorSetLayout)
// 3D object descriptor set
descriptorSets.`object` = device allocateDescriptorSets allocInfo
val writeDescriptorSets = vk.WriteDescriptorSet(2).also {
// Binding 0 : Vertex shader uniform buffer
it[0](descriptorSets.`object`, VkDescriptorType.UNIFORM_BUFFER, 0, uniformBuffers.`object`.descriptor)
// Binding 1 : Fragment shader cubemap sampler
it[1](descriptorSets.`object`, VkDescriptorType.COMBINED_IMAGE_SAMPLER, 1, textureDescriptor)
}
device.updateDescriptorSets(writeDescriptorSets)
// Sky box descriptor set
descriptorSets.skybox = device allocateDescriptorSets allocInfo
writeDescriptorSets.also {
// Binding 0 : Vertex shader uniform buffer
it[0](descriptorSets.skybox, VkDescriptorType.UNIFORM_BUFFER, 0, uniformBuffers.skybox.descriptor)
// Binding 1 : Fragment shader cubemap sampler
it[1](descriptorSets.skybox, VkDescriptorType.COMBINED_IMAGE_SAMPLER, 1, textureDescriptor)
}
device updateDescriptorSets writeDescriptorSets
}
fun preparePipelines() {
val inputAssemblyState = vk.PipelineInputAssemblyStateCreateInfo(VkPrimitiveTopology.TRIANGLE_LIST, 0, false)
val rasterizationState = vk.PipelineRasterizationStateCreateInfo(VkPolygonMode.FILL, VkCullMode.BACK_BIT.i, VkFrontFace.COUNTER_CLOCKWISE)
val blendAttachmentState = vk.PipelineColorBlendAttachmentState(0xf, false)
val colorBlendState = vk.PipelineColorBlendStateCreateInfo(blendAttachmentState)
val depthStencilState = vk.PipelineDepthStencilStateCreateInfo(false, false, VkCompareOp.LESS_OR_EQUAL)
val viewportState = vk.PipelineViewportStateCreateInfo(1, 1)
val multisampleState = vk.PipelineMultisampleStateCreateInfo(VkSampleCount.`1_BIT`)
val dynamicStateEnables = listOf(VkDynamicState.VIEWPORT, VkDynamicState.SCISSOR)
val dynamicState = vk.PipelineDynamicStateCreateInfo(dynamicStateEnables)
// Vertex bindings and attributes
val vertexInputBinding = vk.VertexInputBindingDescription(0, vertexLayout.stride, VkVertexInputRate.VERTEX)
val vertexInputAttributes = vk.VertexInputAttributeDescription(
0, 0, VkFormat.R32G32B32_SFLOAT, 0, // Location 0: Position
0, 1, VkFormat.R32G32B32_SFLOAT, Vec3.size) // Location 1: Normal
val vertexInputState = vk.PipelineVertexInputStateCreateInfo {
vertexBindingDescription = vertexInputBinding
vertexAttributeDescriptions = vertexInputAttributes
}
val shaderStages = vk.PipelineShaderStageCreateInfo(2)
val pipelineCreateInfo = vk.GraphicsPipelineCreateInfo(pipelineLayout, renderPass, 0).also {
it.inputAssemblyState = inputAssemblyState
it.rasterizationState = rasterizationState
it.colorBlendState = colorBlendState
it.multisampleState = multisampleState
it.viewportState = viewportState
it.depthStencilState = depthStencilState
it.dynamicState = dynamicState
it.stages = shaderStages
it.vertexInputState = vertexInputState
}
// Skybox pipeline (background cube)
shaderStages[0].loadShader("$assetPath/shaders/texturecubemap/skybox.vert.spv", VkShaderStage.VERTEX_BIT)
shaderStages[1].loadShader("$assetPath/shaders/texturecubemap/skybox.frag.spv", VkShaderStage.FRAGMENT_BIT)
pipelines.skybox = device.createPipeline(pipelineCache, pipelineCreateInfo)
// Cube map reflect pipeline
shaderStages[0].loadShader("$assetPath/shaders/texturecubemap/reflect.vert.spv", VkShaderStage.VERTEX_BIT)
shaderStages[1].loadShader("$assetPath/shaders/texturecubemap/reflect.frag.spv", VkShaderStage.FRAGMENT_BIT)
// Enable depth test and write
depthStencilState.depthWriteEnable = true
depthStencilState.depthTestEnable = true
// Flip cull mode
rasterizationState.cullMode = VkCullMode.FRONT_BIT.i
pipelines.reflect = device.createPipeline(pipelineCache, pipelineCreateInfo)
}
/** Prepare and initialize uniform buffer containing shader uniforms */
fun prepareUniformBuffers() {
// Objact vertex shader uniform buffer
vulkanDevice.createBuffer(
VkBufferUsage.UNIFORM_BUFFER_BIT.i,
VkMemoryProperty.HOST_VISIBLE_BIT or VkMemoryProperty.HOST_COHERENT_BIT,
uniformBuffers.`object`,
VkDeviceSize(uboVS.size.L))
// Skybox vertex shader uniform buffer
vulkanDevice.createBuffer(
VkBufferUsage.UNIFORM_BUFFER_BIT.i,
VkMemoryProperty.HOST_VISIBLE_BIT or VkMemoryProperty.HOST_COHERENT_BIT,
uniformBuffers.skybox,
VkDeviceSize(uboVS.size.L))
// Map persistent
uniformBuffers.`object`.map()
uniformBuffers.skybox.map()
updateUniformBuffers()
}
fun updateUniformBuffers() {
// 3D object
var viewMatrix = Mat4(1f)
uboVS.projection = glm.perspective(60.0f.rad, size.aspect, 0.001f, 256f)
viewMatrix = glm.translate(viewMatrix, 0f, 0f, zoom)
uboVS.model put 1f
uboVS.model = viewMatrix * glm.translate(uboVS.model, cameraPos)
.rotateAssign(rotation.x.rad, 1f, 0f, 0f)
.rotateAssign(rotation.y.rad, 0f, 1f, 0f)
.rotateAssign(rotation.z.rad, 0f, 0f, 1f)
uboVS to uniformBuffers.`object`.mapped
// Skybox
viewMatrix put 1f
uboVS.projection = glm.perspective(60f.rad, size.aspect, 0.001f, 256f)
uboVS.model put viewMatrix
uboVS.model
.rotateAssign(rotation.x.rad, 1f, 0f, 0f)
.rotateAssign(rotation.y.rad, 0f, 1f, 0f)
.rotateAssign(rotation.z.rad, 0f, 0f, 1f)
uboVS to uniformBuffers.skybox.mapped
}
fun draw() {
super.prepareFrame()
submitInfo.commandBuffer = drawCmdBuffers[currentBuffer]
queue submit submitInfo
super.submitFrame()
}
override fun prepare() {
super.prepare()
loadTextures()
loadAssets()
prepareUniformBuffers()
setupDescriptorSetLayout()
preparePipelines()
setupDescriptorPool()
setupDescriptorSets()
buildCommandBuffers()
prepared = true
window.show()
}
override fun render() {
if (!prepared)
return
draw()
}
override fun viewChanged() = updateUniformBuffers()
// virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
// {
// if (overlay->header("Settings")) {
// if (overlay->sliderFloat("LOD bias", &uboVS.lodBias, 0.0f, (float)cubeMap.mipLevels)) {
// updateUniformBuffers()
// }
// if (overlay->comboBox("Object type", &models.objectIndex, objectNames)) {
// buildCommandBuffers()
// }
// if (overlay->checkBox("Skybox", &displaySkybox)) {
// buildCommandBuffers()
// }
// }
// }
}