-
Notifications
You must be signed in to change notification settings - Fork 1
/
questions.py
190 lines (143 loc) · 5.39 KB
/
questions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import nltk
import sys
import os
import math
import string
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
FILE_MATCHES = 1
SENTENCE_MATCHES = 1
def main():
# Check command-line arguments
if len(sys.argv) != 2:
sys.exit("Usage: python questions.py corpus")
# Calculate IDF values across files
files = load_files(sys.argv[1])
file_words = {
filename: tokenize(files[filename])
for filename in files
}
file_idfs = compute_idfs(file_words)
# Prompt user for query
query = set(tokenize(input("Query: ")))
# Determine top file matches according to TF-IDF
filenames = top_files(query, file_words, file_idfs, n=FILE_MATCHES)
# Extract sentences from top files
sentences = dict()
for filename in filenames:
for passage in files[filename].split("\n"):
for sentence in nltk.sent_tokenize(passage):
tokens = tokenize(sentence)
if tokens:
sentences[sentence] = tokens
# Compute IDF values across sentences
idfs = compute_idfs(sentences)
# Determine top sentence matches
matches = top_sentences(query, sentences, idfs, n=SENTENCE_MATCHES)
for match in matches:
print(match)
def load_files(directory):
"""
Given a directory name, return a dictionary mapping the filename of each
`.txt` file inside that directory to the file's contents as a string.
"""
returning = dict()
keys = os.listdir(directory)
for key in keys:
path = (os.path.join(directory, key))
with open(path, encoding="utf8") as f:
s = f.read()
returning[key] = s
return returning
def tokenize(document):
"""
Given a document (represented as a string), return a list of all of the
words in that document, in order. ######## what mean >in order<
Process document by coverting all words to lowercase, and removing any
punctuation or English stopwords.
"""
words = word_tokenize(document) # print(len(words))
stop_words = set(stopwords.words('english'))
filtered = []
for word in words:
word = word.lower()
if word not in string.punctuation:
if word not in stop_words:
filtered.append(word)
return filtered
def compute_idfs(documents):
"""
Given a dictionary of `documents` that maps names of documents to a list
of words, return a dictionary that maps words to their IDF values.
Any word that appears in at least one of the documents should be in the
resulting dictionary.
"""
# print("Extracting words from documents...")
words = set()
for key in documents:
words.update(documents[key])
# print("Calculating inverse document frequencies...") #
idfs = dict()
for word in words:
f = sum(word in documents[key] for key in documents)
idf = math.log(len(documents) / f)
idfs[word] = idf
return idfs
def top_files(query, files, idfs, n):
"""
Given a `query` (a set of words), `files` (a dictionary mapping names of
files to a list of their words), and `idfs` (a dictionary mapping words
to their IDF values), return a list of the filenames of the the `n` top
files that match the query, ranked according to tf-idf.
"""
# checking if query words in idfs
query_words = [word.lower() for word in query
if word in idfs.keys()
]
#print("Calculating term frequencies...")
tfidfs = dict()
# Add keys in dict -> DICT={FILENAME:{QUERY_WORD:HOW_MANY_TIMES_IN FILENAME}}
for filename in files:
tfidfs[filename] = dict()
for word in query_words:
tfidfs[filename][word] = 0
# COUNTING
for filename in files:
for word in files[filename]:
for query_word in query_words:
if word == query_word:
tfidfs[filename][query_word] += 1
for word in query_words:
tfidfs[filename][word] *= idfs[word]
sum_dict = dict()
for key in files:
sum_dict[key] = 0
for word in query_words:
sum_dict[key] += tfidfs[key][word]
sum_dict = dict(sorted(sum_dict.items(), key=lambda x: x[1], reverse=True))
return_list = []
for i in range(n):
return_list.append(list(sum_dict.keys())[i])
return return_list
def top_sentences(query, sentences, idfs, n):
"""
Given a `query` (a set of words), `sentences` (a dictionary mapping
sentences to a list of their words), and `idfs` (a dictionary mapping words
to their IDF values), return a list of the `n` top sentences that match
the query, ranked according to idf. If there are ties, preference should
be given to sentences that have a higher query term density.
"""
sentences_values = dict()
for sentence in sentences:
value = sum(idfs[word]
for word in query
if word in sentences[sentence])
sentences_values[sentence] = [value,
(sum(word in sentences[sentence] for word in query)/len(sentences[sentence]))]
sentences_values_sorted = dict(sorted(sentences_values.items(), key=lambda x: (-x[1][0], -x[1][1])))
return_list = []
for i in range(n):
return_list.append(list(sentences_values_sorted.keys())[i])
return return_list
if __name__ == "__main__":
main()