-
Notifications
You must be signed in to change notification settings - Fork 0
/
about.html
55 lines (52 loc) · 2.77 KB
/
about.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Bernoulli Percolation Visualizer</title>
<link rel="apple-touch-icon" sizes="180x180" href="icons/apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="icons/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="icons/favicon-16x16.png">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css">
<link rel="stylesheet" href="style.css">
</head>
<body>
<div class="container">
<div class="row">
<div class="col-12">
<div class="text-center">
<h1>Bernoulli Percolation</h1>
</div>
</div>
</div>
<div class="row">
<div class="col-12">
<div class="text-center">
<a class="nav-link" id="home-page-link" href="index.html">home</a>
</div>
</div>
</div>
<div class="row">
<div class="col-12">
<div id="about-card" class="text-center">
<h2>Welcome to the Bernoulli Percolation Visualizer!</h2>
<p id="about-text">
Bernoulli Percolation is a mathematical model for percolation, which is a phenomenon of fluid flow through porous
materials. It is a random process where each element in a 2D grid has a probability p of being occupied, or a
probability (1-p) of being unoccupied. The goal of this visualizer is to show the effect of Bernoulli Percolation
through a 2D grid simulation.<br><br>
In the simulation, you will see a grid of pixels displayed on the page. The pixels are colored based on the value of the
current probability, which you can control using the slider element on the page. As you adjust the slider, the
probability of the pixels being occupied changes, and the pixels will form different connected components. A connected
component is a set of cells that are occupied and vertically or horizontally adjacent in the grid.<br><br>
By exploring the different values of the probability, you can see how the percolation changes and how the connected
components evolve. Enjoy :)
</p>
</div>
</div>
</div>
</div>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.bundle.min.js"></script>
</body>
</html>