-
Notifications
You must be signed in to change notification settings - Fork 11
/
threeBody3Frame.jl
executable file
·347 lines (330 loc) · 16.6 KB
/
threeBody3Frame.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#!/usr/bin/env julia
using Plots, Random, Printf, Plots.Measures
function initCondGen() #get random initial conditions for mass/radius, position, and velocity
function getMass(nBodies) #generate random masses that better reflect actual stellar populations
mList=zeros(nBodies)
N=(0.5^(-1.3)-150^(-1.3))/1.3 #crude approximation of IMF integral assuming alpha = 2.3, stellar mass range of 0.5:150 solar masses
rescale=1e6
max=floor(Int,N*rescale)
for i=1:nBodies
intTarget=rand(0:max,1)[1]/rescale
m=(0.5^(-1.3)-intTarget*1.3)^(-1/1.3) #just algebra from above
mList[i]=round(m,digits=2)
end
return mList
end
m=rand(1:1500,3)./10 #3 random masses between 0.1 and 150 solar masses, uniform distribution
#m=getMass(3) #get mass from IMF -- this way is kind of boring...so not using it, but left here in case I change my mind?
rad=m.^0.8 #3 radii based on masses in solar units
m=m.*2e30 #convert to SI kg
rad=rad.*7e8 #convert to SI m
pos1=rand(-10:10,3) #random initial coordinates x & y for first body, AU
function genPos2(pos1)
accept2=false
while accept2==false
pos2=rand(-10:10,3) #random initial coordinates for second body, AU
dist21=sqrt((pos1[1]-pos2[1])^2+(pos1[2]-pos2[2])^2+(pos1[3]-pos2[3])^2)
if (dist21*1.5e11)>(rad[1]+rad[2]) #they aren't touching
accept2=true
return pos2
end
end
end
pos2=genPos2(pos1)
function genPos3(pos1,pos2)
accept3=false
while accept3==false
pos3=rand(-10:10,3) #random initial coordinates for third body, AU
dist31=sqrt((pos1[1]-pos3[1])^2+(pos1[2]-pos3[2])^2+(pos1[3]-pos3[3])^2)
dist32=sqrt((pos2[1]-pos3[1])^2+(pos2[2]-pos3[2])^2+(pos2[3]-pos3[3])^2)
if (dist31*1.5e11)>(rad[1]+rad[3]) && (dist32*1.5e11)>(rad[2]+rad[3]) #3rd isn't touching either
accept3=true
return pos3
end
end
end
pos3=genPos3(pos1,pos2)
pos=[pos1[1],pos1[2],pos1[3],pos2[1],pos2[2],pos2[3],pos3[1],pos3[2],pos3[3]].*1.5e11 #convert accepted positions to SI, m
v=rand(-7e3:7e3,9) #random xyz velocities with mag between -10 & 10 km/s, totally arbitrary...
#r=[x1,y1,x2,y2,x3,y3,v1x,v1y,v2x,v2y,v3x,v3y]
r=[pos[1],pos[2],pos[3],pos[4],pos[5],pos[6],pos[7],pos[8],pos[9],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9]]
open("initCond.txt","w") do f #save initial conditions to file in folder where script is run
write(f,"m1=$(@sprintf("%.1f",(m[1]/2e30))) m2=$(@sprintf("%.1f",(m[2]/2e30))) m3=$(@sprintf("%.1f",(m[3]/2e30))) (solar masses)\nv1x=$(v[1]/1e3) v1y=$(v[2]/1e3) v1z=$(v[3]/1e3) v2x=$(v[4]/1e3) v2y=$(v[5]/1e3) v2z=$(v[6]/1e3) v3x=$(v[7]/1e3) v3y=$(v[8]/1e3) v3z=$(v[9]/1e3) (km/s)\nx1=$(pos1[1]) y1=$(pos1[2]) z1=$(pos1[3]) x2=$(pos2[1]) y2=$(pos2[2]) z2=$(pos2[3]) x3=$(pos3[1]) y3=$(pos3[2]) z3=$(pos3[3]) (AU from center)")
end
return r, rad, m
end
function dR(r,m) #function we will use RK4 on to approximate solution
G=6.67408313131313e-11# Nm^2/kg^2
M1,M2,M3=m[1],m[2],m[3] #kg
x1,x2,x3=r[1],r[4],r[7] #m
y1,y2,y3=r[2],r[5],r[8] #m
z1,z2,z3=r[3],r[6],r[9]
c1,c2,c3=G*M1,G*M2,G*M3 #Nm^2/kg
r1_2=sqrt((x1-x2)^2+(y1-y2)^2+(z1-z2)^2) #distance from 1->2, m
r1_3=sqrt((x1-x3)^2+(y1-y3)^2+(z1-z3)^2) #distance from 1->3, m
r2_3=sqrt((x2-x3)^2+(y2-y3)^2+(z2-z3)^2) #distance from 2->3, m
v1X,v2X,v3X=r[10],r[13],r[16] #these are our change in position after dt (dr/dt*dt=dr)
v1Y,v2Y,v3Y=r[11],r[14],r[17] #m after * dt
v1Z,v2Z,v3Z=r[12],r[15],r[18]
#get change in velocity from accelerations (d^2r/dt^2*dt=dv/dt*dt=dv)
dx1=-(c2*(x1-x2)/(r1_2^3))-(c3*(x1-x3)/(r1_3^3)) #d^2x/dt^2 for 1, m/s after * dt
dx2=-(c1*(x2-x1)/(r1_2^3))-(c3*(x2-x3)/(r2_3^3)) #d^2x/dt^2 for 2, m/s
dx3=-(c1*(x3-x1)/(r1_3^3))-(c2*(x3-x2)/(r2_3^3)) #d^2x/dt^2 for 3, m/s
dy1=-(c2*(y1-y2)/(r1_2^3))-(c3*(y1-y3)/(r1_3^3)) #d^2y/dt^2 for 1, m/s
dy2=-(c1*(y2-y1)/(r1_2^3))-(c3*(y2-y3)/(r2_3^3)) #d^2y/dt^2 for 2, m/s
dy3=-(c1*(y3-y1)/(r1_3^3))-(c2*(y3-y2)/(r2_3^3)) #d^2y/dt^2 for 3, m/s
dz1=-(c2*(z1-z2)/(r1_2^3))-(c3*(z1-z3)/(r1_3^3)) #d^2y/dt^2 for 1, m/s
dz2=-(c1*(z2-z1)/(r1_2^3))-(c3*(z2-z3)/(r2_3^3)) #d^2y/dt^2 for 2, m/s
dz3=-(c1*(z3-z1)/(r1_3^3))-(c2*(z3-z2)/(r2_3^3)) #d^2y/dt^2 for 3, m/s
return [v1X,v1Y,v1Z,v2X,v2Y,v2Z,v3X,v3Y,v3Z,dx1,dy1,dz1,dx2,dy2,dz2,dx3,dy3,dz3]
end
function gen3Body(stopCond=[10,100],numSteps=10000) #default stop conditions of 10 yrs and 100 AU sep
tStop=stopCond[1]*365*24*3600 #convert to SI s
sepStop=stopCond[2]*1.5e11 #convert to SI m
stop=false
currentT=0
t=range(0,stop=tStop,length=(numSteps+1)) #+1 because I don't want 0 to count
stepSize=tStop/numSteps
x1=zeros(length(t))
y1=zeros(length(t))
z1=zeros(length(t))
x2=zeros(length(t))
y2=zeros(length(t))
z2=zeros(length(t))
x3=zeros(length(t))
y3=zeros(length(t))
z3=zeros(length(t))
r,rad,m=initCondGen()
min12=rad[1]+rad[2]
min13=rad[1]+rad[3]
min23=rad[2]+rad[3]
i=1
stopT=maximum(t)
collisionBool=false
#implement RK4 to model solutions to differential equations
while stop==false
if currentT==stopT || currentT>stopT #in case of rounding error or something
stop=true
elseif i>numSteps+1 #inf loop failsafe
stop=true
println("error: shouldn't have gotten here")
else
x1[i]=r[1]
y1[i]=r[2]
z1[i]=r[3]
x2[i]=r[4]
y2[i]=r[5]
z2[i]=r[6]
x3[i]=r[7]
y3[i]=r[8]
z3[i]=r[9]
k1=stepSize*dR(r,m)
k2=stepSize*dR(r.+0.5.*k1,m)
k3=stepSize*dR(r.+0.5.*k2,m)
k4=stepSize*dR(r.+k3,m)
r+=(k1.+2.0*k2.+2.0.*k3.+k4)./6
#check separation after each dt step
sep12=sqrt((x1[i]-x2[i])^2+(y1[i]-y2[i])^2+(z1[i]-z2[i])^2)
sep13=sqrt((x1[i]-x3[i])^2+(y1[i]-y3[i])^2+(z1[i]-z3[i])^2)
sep23=sqrt((x3[i]-x2[i])^2+(y3[i]-y2[i])^2+(z3[i]-z2[i])^2)
if sep12<min12 || sep13<min13 || sep23<min23 || sep12>sepStop || sep13>sepStop || sep23>sepStop
if sep12<min12 || sep13<min13 || sep23<min23
collisionBool=true
else
collisionBool=false
end
stop=true #stop if collision happens or body is ejected
t=range(0,stop=currentT,length=i) #t should match pos vectors
x1=x1[1:i] #don't want trailing zeros
y1=y1[1:i]
z1=z1[1:i]
x2=x2[1:i]
y2=y2[1:i]
z2=z2[1:i]
x3=x3[1:i]
y3=y3[1:i]
z3=z3[1:i]
end
i+=1
currentT+=stepSize #next step
end
end
return [x1,y1,z1,x2,y2,z2,x3,y3,z3], t, m, rad, collisionBool
end
function getInteresting3Body(minTime=0) #in years, defaults to 0
#sometimes random conditions result in a really short animation where things
#just crash into each other/fly away, so this function throws away those
yearSec=365*24*3600
interesting=false
i=1
while interesting==false
plotData,t,m,rad,collisionBool=gen3Body([60,150],600000)
if (maximum(t)/yearSec)>minTime #only return if simulation runs for longer than minTime
println(maximum(t)/yearSec) #tell me how many years we are simulating
open("cron_log.txt","a") do f #for cron logging, a flag = append
write(f,"$(maximum(t)/yearSec)\n")
end
return plotData,t,m,rad,collisionBool
interesting=true
elseif i>5000 #computationally expensive so don't want to go forever
interesting=true #render it anyways I guess because sometimes it's fun?
println("did not find interesting solution in number of tries allotted, running anyways")
println(maximum(t)/yearSec) #how many years simulation runs for
open("cron_log.txt","a") do f #for cron logging
write(f,"$(maximum(t)/yearSec)\n")
end
return plotData,t,m,rad,collisionBool
end
i+=1
end
end
function getLims(pos,padding) #determines plot limits at each frame, padding in units of pos
x=[pos[1],pos[4],pos[7]]
xMin=minimum(x)
xMax=maximum(x)
dx=xMax-xMin
y=[pos[2],pos[5],pos[8]]
yMin=minimum(y)
yMax=maximum(y)
dy=yMax-yMin
z=[pos[3],pos[6],pos[9]]
zMin=minimum(z)
zMax=maximum(z)
dz=zMax-zMin
dList=[dx,dy,dz]
if maximum(dList)==dx
#use x for square
xlims=[xMin-padding,xMax+padding]
ylims=[yMin-padding,yMin+dx+padding]
zlims=[zMin-padding,zMin+dx+padding]
elseif maximum(dList)==dy
#use y for square
xlims=[xMin-padding,xMin+dy+padding]
ylims=[yMin-padding,yMax+padding]
zlims=[zMin-padding,zMin+dy+padding]
else
#use z for cube
xlims=[xMin-padding,xMin+dz+padding]
ylims=[yMin-padding,yMin+dz+padding]
zlims=[zMin-padding,zMax+padding]
end
return xlims,ylims,zlims
end
function getColors(m,c) #places colors of objects according to mass/size
#c=[:biggest,:medium,:smallest] (order of input colors)
maxM=maximum(m)
minM=minimum(m)
colors=[:blue,:blue,:blue] #testing
if m[1]==maxM
colors[1]=c[1]
if m[2]==minM
colors[2]=c[3]
colors[3]=c[2]
else
colors[3]=c[3]
colors[2]=c[2]
end
elseif m[2]==maxM
colors[2]=c[1]
if m[1]==minM
colors[1]=c[3]
colors[3]=c[2]
else
colors[3]=c[3]
colors[1]=c[2]
end
else
colors[3]=c[1]
if m[1]==minM
colors[1]=c[3]
colors[2]=c[2]
else
colors[2]=c[3]
colors[1]=c[2]
end
end
return colors
end
function makeCircleVals(r,center=[0,0])
xOffset=center[1]
yOffset=center[2]
xVals=[r*cos(i)+xOffset for i=0:(pi/64):(2*pi)]
yVals=[r*sin(i)+yOffset for i=0:(pi/64):(2*pi)]
return xVals,yVals
end
plotData,t,m,rad,collisionBool=getInteresting3Body(15)
c=[:DodgerBlue,:Gold,:Tomato] #most massive to least massive, also roughly corresponds to temp
colors=getColors(m,c)
#adding fake stars
numStars=2500
starsX=zeros(numStars)
starsY=zeros(numStars)
starsZ=zeros(numStars)
for i=1:numStars
num=rand(-200:200,3) #box size is 70 AU but we need some extra padding for movement
starsX[i]=num[1]
starsY[i]=num[2]
starsZ[i]=num[3]
end
stars = [starsX,starsY,starsZ]
global frameNum=1
stop=length(t)
if collisionBool==true
stop=length(t)-600
end
function makePanel(i1,i2,i,rad,plotData,stars,x,y,lims)
p=plot(plotData[i1][1:33:i]./1.5e11,plotData[i2][1:33:i]./1.5e11,label="",linewidth=2,linecolor=colors[1],linealpha=max.((1:33:i) .+ 10000 .- i,2500)/10000) #plot orbits up to i
p=plot!(plotData[i1+3][1:33:i]./1.5e11,plotData[i2+3][1:33:i]./1.5e11,label="",linewidth=2,linecolor=colors[2],linealpha=max.((1:33:i) .+ 10000 .- i,2500)/10000) #linealpha argument causes lines to decay
p=plot!(plotData[i1+6][1:33:i]./1.5e11,plotData[i2+6][1:33:i]./1.5e11,label="",linewidth=2,linecolor=colors[3],linealpha=max.((1:33:i) .+ 10000 .- i,2500)/10000) #example: alpha=max.((1:i) .+ 100 .- i,0) causes only last 100 to be visible
p=scatter!(stars[i1],stars[i2],markercolor=:white,markersize=:1,label="") #fake background stars
star1=makeCircleVals(rad[1],[plotData[i1][i],plotData[i2][i]]) #generate circles with appropriate sizes for each star
star2=makeCircleVals(rad[2],[plotData[i1+3][i],plotData[i2+3][i]]) #at current positions
star3=makeCircleVals(rad[3],[plotData[i1+6][i],plotData[i2+6][i]])
p=plot!(star1[1]./1.5e11,star1[2]./1.5e11,label="$(@sprintf("%.1f", m[1]./2e30))",color=colors[1],fill=true) #plot star circles with labels
p=plot!(star2[1]./1.5e11,star2[2]./1.5e11,label="$(@sprintf("%.1f", m[2]./2e30))",color=colors[2],fill=true)
p=plot!(star3[1]./1.5e11,star3[2]./1.5e11,label="$(@sprintf("%.1f", m[3]./2e30))",color=colors[3],fill=true)
p=plot!(background_color=:black,background_color_legend=:transparent,foreground_color_legend=:transparent,
background_color_outside=:white,aspect_ratio=:equal,legendtitlefontcolor=:white,legendfontfamily="Courier") #formatting for plot frame
p=plot!(xlabel="$x: AU",ylabel="$y: AU",title="$x$y plane",
legend=:best,xaxis=("$x: AU",(lims[i1][1],lims[i1][2]),font(9,"Courier")),yaxis=("$y: AU",(lims[i2][1],lims[i2][2]),font(9,"Courier")),
grid=false,titlefont=font(14,"Courier"),size=(720,721),legendfontsize=8,legendtitle="Mass (in solar masses)",legendtitlefontsize=8,legendtitlefont="Courier") #add in axes/title/legend with formatting
return p
end
for i=1:333:stop #this makes animation scale ~1 sec/year with other conditions
GR.inline("png") #added to eneable cron/jobber compatibility, also this makes frames generate WAY faster? Prior to adding this when run from cron/jobber frames would stop generating at 408 for some reason.
gr(legendfontcolor = plot_color(:white)) #legendfontcolor=:white plot arg broken right now (at least in this backend)
print("$(@sprintf("%.2f",i/length(t)*100)) % complete\r") #output percent tracker
pos=[plotData[1][i],plotData[2][i],plotData[3][i],plotData[4][i],plotData[5][i],plotData[6][i],plotData[7][i],plotData[8][i],plotData[9][i]] #current pos
lims=getLims(pos./1.5e11,15) #convert to AU, 10 AU padding
pXY=makePanel(1,2,i,rad,plotData,stars,"x","y",lims)
pXZ=makePanel(1,3,i,rad,plotData,stars,"x","z",lims)
pYZ=makePanel(2,3,i,rad,plotData,stars,"y","z",lims)
title = plot(title = "Random Three-Body Problem: t = $(@sprintf("%0.2f",t[i]/365/24/3600)) years after start", grid = false, showaxis = false,titlefontcolor=:black,titlefont=(font(18,"Courier")),
background_color=:white,foreground_color=:white,background_color_outside=:white,ticks=false,background_color_legend=:white,foreground_color_legend=:white,background_color_subplot=:white,background_color_inside=:white,foreground_color_subplot=:white)
P = plot(title,pXY,pXZ,pYZ,layout=@layout([A{0.05h}; [B C D]]),size=(720*3,720),left_margin=5mm,bottom_margin=5mm)
png(P,@sprintf("tmpPlots/frame_%06d.png",frameNum))
global frameNum+=1
closeall() #close plots
end
if collisionBool==true #this condition makes 2 seconds of slo-mo right before the collision
println("making collision cam")
for i=1:10:600
GR.inline("png") #added to eneable cron/jobber compatibility, also this makes frames generate WAY faster? Prior to adding this when run from cron/jobber frames would stop generating at 408 for some reason.
gr(legendfontcolor = plot_color(:white)) #legendfontcolor=:white plot arg broken right now (at least in this backend)
print("$(@sprintf("%.2f",i/600*100)) % complete\r") #output percent tracker
I = length(plotData[1])-(600-i)
pos=[plotData[1][end-(600-i)],plotData[2][end-(600-i)],plotData[3][end-(600-i)],plotData[4][end-(600-i)],plotData[5][end-(600-i)],plotData[6][end-(600-i)],plotData[7][end-(600-i)],plotData[8][end-(600-i)],plotData[9][end-(600-i)]] #current pos
lims=getLims(pos./1.5e11,15) #convert to AU, 15 AU padding
pXY=makePanel(1,2,I,rad,plotData,stars,"x","y",lims)
pXZ=makePanel(1,3,I,rad,plotData,stars,"x","z",lims)
pYZ=makePanel(2,3,I,rad,plotData,stars,"y","z",lims)#add in axes/title/legend with formatting
title = plot(title = "Random Three-Body Problem: t = $(@sprintf("%0.2f",t[i]/365/24/3600)) years after start", grid = false, showaxis = false,titlefontcolor=:black,titlefont=(font(18,"Courier")),
background_color=:white,foreground_color=:white,background_color_outside=:white,ticks=false,background_color_legend=:white,foreground_color_legend=:white,background_color_subplot=:white,background_color_inside=:white,foreground_color_subplot=:white)
P = plot(title,pXY,pXZ,pYZ,layout=@layout([A{0.05h}; [B C D]]),size=(720*3,720),left_margin=5mm,bottom_margin=5mm)
P=annotate!((lims[1][1]+(lims[1][2]-lims[1][1])/40,lims[2][2]-(lims[2][2]-lims[2][1])/40,Plots.text("COLLISION CAM (slo-mo x 33)",10,"Courier",:orange,:left,:bold)))
png(P,@sprintf("tmpPlots/frame_%06d.png",frameNum))
global frameNum+=1
closeall() #close plots
end
end
run(`ffmpeg -y -framerate 30 -i "tmpPlots/frame_%06d.png" -c:v libx264 -preset slow -coder 1 -movflags +faststart -g 15 -crf 18 -pix_fmt yuv420p -profile:v high -y -bf 2 "/home/kirk/Documents/3Body/3Body3Frame_fps30.mp4"`)