forked from Rita-Li527/494_final_project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
runmodel2.Rmd
420 lines (319 loc) · 11.3 KB
/
runmodel2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
---
title: '494 final project'
author: "Kristy Ma, Rita Li"
date: "`r Sys.Date()`"
output: html_document
---
```{r load-packages, message = F}
library(snpStats)
library(dplyr)
library(ggplot2)
library(broom)
library(SNPRelate)
library(GENESIS)
library(GWASTools)
```
```{r open gds,cache=TRUE}
# uncor_null <- snpgdsOpen("./plinklmm/uncor_null.gds") #1
# uncor_asso <- snpgdsOpen("./plinklmm/uncor_asso.gds") #2
# cor_null <- snpgdsOpen("./plinklmm/cor_null.gds") #3
# cor_asso <- snpgdsOpen("./plinklmm/cor_asso.gds") #4
```
This document is used to run models for four dataset. For uncor dataset, there are 107 people; For cor dataset, there are 165 people. And there are 1000 snps to do GWAS.
# Run model on uncorrelated data
## uncorr, null
### LM
```{r uncorr-null-LM}
betas <- c()
ses <- c()
tstats <- c()
pvals <- c()
# loop through chromosome 1 SNPs
for(i in 1:1000){
# print out occasional updates telling us what SNP we're analyzing
if(i %% 100 == 0) print(paste('Analyzing SNP', i))
# fit model
mod <- lm(y_uncor_null ~ uncor.geno[,i])
# get coefficient information
coefinfo <- tidy(mod)
# record estimate, SE, test stat, and p-value
betas[i] <- coefinfo$estimate[2]
ses[i] <- coefinfo$std.error[2]
tstats[i] <- coefinfo$statistic[2]
pvals[i] <- coefinfo$p.value[2]
}
result1 <- colnames(uncor.geno) %>%
as.data.frame() %>%
mutate(Estimate = betas,
Std.Error = ses,
Test.Statistic = tstats,
P.Value = pvals,
snp.name = colnames(uncor.geno)) %>%
left_join(map, by = "snp.name")
```
### LMM
```{r uncorr-null-LMM}
# Step1: read in
geno1 <- GdsGenotypeReader(filename = "./plinklmm_2/uncor_null.gds")
geno1 <- GenotypeData(geno1)
# Step2: King matrix
file <- snpgdsOpen("./plinklmm_2/uncor_null.gds", allow.duplicate = TRUE)
uncor_king <- king.matrix[unrelated,unrelated]
# Step3: pc air
mypcair <- pcair(geno1, kinobj = uncor_king, divobj = uncor_king, snp.include = getSnpID(geno1),autosome.only=FALSE)
```
```{r}
# step 4 pc relate
hapmap_geno1 <- GenotypeBlockIterator(geno1, snpInclude=getSnpID(geno1))
mypcrelate1 <- pcrelate(hapmap_geno1, pcs = mypcair$vectors[,1:2],
training.set = unrelated,
BPPARAM = BiocParallel::SerialParam())
# step 5 read in GRM
myGRM1 <- pcrelateToMatrix(mypcrelate1)
myGRM1[1:5,1:5]
# step 6 scanAnnot
mydat <- data.frame(scanID = mypcair$sample.id,
pc1 = mypcair$vectors[,1],
pheno = y_uncor_null)
head(mydat)
scanAnnot <- ScanAnnotationDataFrame(mydat)
# step 7 fit null model
nullmod1 <- fitNullModel(scanAnnot, outcome = "pheno",
covars = "pc1",
cov.mat = myGRM1, family = "gaussian")
# step 5 run snp association test(LMM marginal regression)
genoIterator <- GenotypeBlockIterator(hapmap_geno1, snpBlock=1000)
assoc1 <- assocTestSingle(genoIterator, null.model = nullmod1,
BPPARAM = BiocParallel::SerialParam())
```
## uncorr, SNP-related model (associative model)
### LM
```{r uncorr-asso-LM}
betas <- c()
ses <- c()
tstats <- c()
pvals <- c()
# loop through chromosome 1 SNPs
for(i in 1:1000){
# print out occasional updates telling us what SNP we're analyzing
if(i %% 100 == 0) print(paste('Analyzing SNP', i))
# fit model
mod <- lm(y_uncor_asso ~ uncor.geno[,i])
# get coefficient information
coefinfo <- tidy(mod)
# record estimate, SE, test stat, and p-value
betas[i] <- coefinfo$estimate[2]
ses[i] <- coefinfo$std.error[2]
tstats[i] <- coefinfo$statistic[2]
pvals[i] <- coefinfo$p.value[2]
}
result2 <- colnames(uncor.geno) %>%
as.data.frame() %>% mutate(Estimate = betas,
Std.Error = ses,
Test.Statistic = tstats,
P.Value = pvals)
```
### LMM
```{r uncorr-asso-LMM}
# Step1: read in
geno2 <- GdsGenotypeReader(filename = "./plinklmm_2/uncor_asso.gds")
geno2 <- GenotypeData(geno2)
# Step2: King matrix
# same with previous one
# Step3: pc air
mypcair <- pcair(geno2, kinobj = uncor_king, divobj = uncor_king, snp.include = getSnpID(geno2),autosome.only=FALSE)
```
```{r}
# step 4 pc relate
hapmap_geno2 <- GenotypeBlockIterator(geno2, snpInclude=getSnpID(geno2))
mypcrelate2 <- pcrelate(hapmap_geno2, pcs = mypcair$vectors[,1:2],
training.set = unrelated,
BPPARAM = BiocParallel::SerialParam())
# step 5 read in GRM
myGRM2 <- pcrelateToMatrix(mypcrelate2)
myGRM2[1:5,1:5]
# step 6 scanAnnot
mydat2 <- data.frame(scanID = mypcair$sample.id,
pc1 = mypcair$vectors[,1],
pheno = y_uncor_asso)
head(mydat2)
scanAnnot2 <- ScanAnnotationDataFrame(mydat2)
# step 7 fit null model
nullmod2 <- fitNullModel(scanAnnot2, outcome = "pheno",
covars = "pc1",
cov.mat = myGRM2, family = "gaussian")
# step 5 run snp association test(LMM marginal regression)
genoIterator <- GenotypeBlockIterator(hapmap_geno2, snpBlock=1000)
assoc2 <- assocTestSingle(genoIterator, null.model = nullmod2,
BPPARAM = BiocParallel::SerialParam())
```
# Run models on correlated data
## corr, null model
### LM
```{r corr-null-LM}
betas <- c()
ses <- c()
tstats <- c()
pvals <- c()
# loop through chromosome 1 SNPs
for(i in 1:1000){
# print out occasional updates telling us what SNP we're analyzing
if(i %% 100 == 0) print(paste('Analyzing SNP', i))
# fit model
mod <- lm(y_cor_null ~ cor.geno[,i])
# get coefficient information
coefinfo <- tidy(mod)
# record estimate, SE, test stat, and p-value
betas[i] <- coefinfo$estimate[2]
ses[i] <- coefinfo$std.error[2]
tstats[i] <- coefinfo$statistic[2]
pvals[i] <- coefinfo$p.value[2]
}
result3 <- colnames(cor.geno) %>%
as.data.frame() %>% mutate(Estimate = betas,
Std.Error = ses,
Test.Statistic = tstats,
P.Value = pvals)
```
### LMM
```{r corr-NULL-LMM}
# Step1: read in
geno3 <- GdsGenotypeReader(filename = "./plinklmm_2/cor_null.gds")
geno3 <- GenotypeData(geno3)
# Step2: King matrix
king <- king.matrix
# Step3: pc air
mypcair <- pcair(geno3, kinobj = king, divobj = king, snp.include = getSnpID(geno3),autosome.only=FALSE)
```
```{r}
# step 4 pc relate
hapmap_geno3 <- GenotypeBlockIterator(geno3, snpInclude=getSnpID(geno3))
mypcrelate3 <- pcrelate(hapmap_geno3,
pcs = mypcair$vectors[,1:2],
training.set = unrelated,
BPPARAM = BiocParallel::SerialParam())
# step 5 read in GRM
myGRM3 <- pcrelateToMatrix(mypcrelate3)
myGRM3[1:5,1:5]
# step 6 scanAnnot
mydat3 <- data.frame(scanID = mypcair$sample.id,
pc1 = mypcair$vectors[,1],
pheno = y_cor_null)
head(mydat3)
scanAnnot3 <- ScanAnnotationDataFrame(mydat3)
# step 7 fit null model
nullmod3 <- fitNullModel(scanAnnot3, outcome = "pheno",
covars = "pc1",
cov.mat = myGRM3, family = "gaussian")
# step 5 run snp association test(LMM marginal regression)
genoIterator <- GenotypeBlockIterator(hapmap_geno3, snpBlock=1000)
assoc3 <- assocTestSingle(genoIterator, null.model = nullmod3,
BPPARAM = BiocParallel::SerialParam())
```
## corr, SNP-related model (associative model)
### LM
```{r}
betas <- c()
ses <- c()
tstats <- c()
pvals <- c()
# loop through chromosome 1 SNPs
for(i in 1:1000){
# print out occasional updates telling us what SNP we're analyzing
if(i %% 100 == 0) print(paste('Analyzing SNP', i))
# fit model
mod <- lm(y_cor_asso ~ cor.geno[,i])
# get coefficient information
coefinfo <- tidy(mod)
# record estimate, SE, test stat, and p-value
betas[i] <- coefinfo$estimate[2]
ses[i] <- coefinfo$std.error[2]
tstats[i] <- coefinfo$statistic[2]
pvals[i] <- coefinfo$p.value[2]
}
result4 <- colnames(cor.geno) %>%
as.data.frame() %>% mutate(Estimate = betas,
Std.Error = ses,
Test.Statistic = tstats,
P.Value = pvals)
```
### LMM
```{r corr-asso-LMM}
# Step1: read in
geno4 <- GdsGenotypeReader(filename = "./plinklmm_2/cor_asso.gds")
geno4 <- GenotypeData(geno4)
# Step2: King matrix
king <- king.matrix
# Step3: pc air
mypcair <- pcair(geno4, kinobj = king, divobj = king, snp.include = getSnpID(geno4),autosome.only=FALSE)
```
```{r}
# step 4 pc relate
hapmap_geno4 <- GenotypeBlockIterator(geno4, snpInclude=getSnpID(geno4))
mypcrelate4 <- pcrelate(hapmap_geno4,
pcs = mypcair$vectors[,1:2],
training.set = unrelated,
BPPARAM = BiocParallel::SerialParam())
# step 5 read in GRM
myGRM4 <- pcrelateToMatrix(mypcrelate4)
myGRM4[1:5,1:5]
# step 6 scanAnnot
mydat4 <- data.frame(scanID = mypcair$sample.id,
pc1 = mypcair$vectors[,1],
pheno = y_cor_asso)
head(mydat4)
scanAnnot4 <- ScanAnnotationDataFrame(mydat4)
# step 7 fit null model
nullmod4 <- fitNullModel(scanAnnot4, outcome = "pheno",
covars = "pc1",
cov.mat = myGRM4, family = "gaussian")
# step 5 run snp association test(LMM marginal regression)
genoIterator <- GenotypeBlockIterator(hapmap_geno4, snpBlock=1000)
assoc4 <- assocTestSingle(genoIterator, null.model = nullmod4,
BPPARAM = BiocParallel::SerialParam())
```
# Manhattan Plot
```{r}
# uncorr null
manhattanPlot(result1$P.Value, result1$chromosome, ylim = c(0, 7), trunc.lines = FALSE, signif = 5e-5, thinThreshold=NULL, pointsPerBin=10000, col=result1$chromosome)
manhattanPlot(assoc1$Score.pval, result1$chromosome, ylim = c(0, 7), trunc.lines = FALSE, signif = 5e-5, thinThreshold=NULL, pointsPerBin=10000, col=result1$chromosome)
# uncorr asso
manhattanPlot(result2$P.Value, result1$chromosome, ylim = c(0, 7), trunc.lines = FALSE, signif = 5e-5, thinThreshold=NULL, pointsPerBin=10000, col=result1$chromosome)
manhattanPlot(assoc2$Score.pval, result1$chromosome, ylim = c(0, 7), trunc.lines = FALSE, signif = 5e-5, thinThreshold=NULL, pointsPerBin=10000, col=result1$chromosome)
# corr null
manhattanPlot(result3$P.Value, result1$chromosome, ylim = c(0, 7), trunc.lines = FALSE, signif = 5e-5, thinThreshold=NULL, pointsPerBin=10000, col=result1$chromosome)
manhattanPlot(assoc3$Score.pval, result1$chromosome, ylim = c(0, 7), trunc.lines = FALSE, signif = 5e-5, thinThreshold=NULL, pointsPerBin=10000, col=result1$chromosome)
# corr asso
manhattanPlot(result4$P.Value, result1$chromosome, ylim = c(0, 7), trunc.lines = FALSE, signif = 5e-5, thinThreshold=NULL, pointsPerBin=10000, col=result1$chromosome)
manhattanPlot(assoc4$Score.pval,result1$chromosome, ylim = c(0, 7), trunc.lines = FALSE, signif = 5e-5, thinThreshold=NULL, pointsPerBin=10000, col=result1$chromosome)
```
# View qqplot
```{r}
# uncorr null
qqPlot(result1$P.Value, truncate = TRUE)
qqPlot(assoc1$Score.pval, truncate = TRUE)
# uncorr asso
qqPlot(result2$P.Value, truncate = TRUE)
qqPlot(assoc2$Score.pval, truncate = TRUE)
# corr null
qqPlot(result3$P.Value, truncate = TRUE)
qqPlot(assoc3$Score.pval, truncate = TRUE)
# corr asso
qqPlot(result4$P.Value, truncate = TRUE)
qqPlot(assoc4$Score.pval, truncate = TRUE)
```
# Lambda GC
```{r gc lambda value}
# uncorr null
gc.lambda(result1$P.Value)
gc.lambda(assoc1$Score.pval)
# uncorr asso
gc.lambda(result2$P.Value)
gc.lambda(assoc2$Score.pval)
# corr null
gc.lambda(result3$P.Value)
gc.lambda(assoc3$Score.pval)
# corr asso
gc.lambda(result4$P.Value)
gc.lambda(assoc4$Score.pval)
```