-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMRA.m
255 lines (232 loc) · 14.6 KB
/
MRA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
function [ sumLogLikelihood, predictions ] = MRA( theta, domainGeometry, outputData, knots, ...
NUM_LEVELS_M, NUM_PARTITIONS_J, nRegions, indexMatrix, isPredicting, NUM_WORKERS, verbose,varargin)
%% MRA.m is the main Multi-resolution approximation function
%
% Input: theta, data, knots, MAX_LEVEL_M, NUM_PARTITIONS_J, nRegions, varargin
%
% Output: sumLogLikelihood, predictions
%%
% Check number of optional input arguments
numVarArgsIn = length(varargin);
if numVarArgsIn > 2
error('myfuns:create_prior:TooManyInputs', ...
'requires at most 2 optional inputs');
end
% set defaults for optional inputs
optionalArguments = {0 NaN};
% overwrite the ones specified in varargin.
optionalArguments(1 : numVarArgsIn) = varargin;
[ varEps, predictionLocations ] = optionalArguments{:};
% Calculate key quantities
cumulativeRegions = cumsum(nRegions);
logLikelihoodSum = 0;
nRegionsAtFinestLevelForEachWorker = (nRegions(NUM_LEVELS_M)/NUM_WORKERS);
maxLevelOnASingleRow = sum(nRegions <= NUM_WORKERS); % How many times indices from a level are assigned to a worker
counter = 1:(NUM_LEVELS_M - maxLevelOnASingleRow);
nTotalRegionsAssignedToEachWorker = maxLevelOnASingleRow + sum(NUM_PARTITIONS_J.^counter);
lastIndexOfSecondFinestLevel = nRegions(NUM_LEVELS_M)-1;
lastRowBeforeFinestLevel = find(indexMatrix(:,end)==lastIndexOfSecondFinestLevel);
%% Pre-allocate space for codistributed arrays
if verbose
disp('In MRA.m: Pre-allocating space for objects ...')
end
spmd(NUM_WORKERS)
codistributionScheme = codistributor1d(2); % Distribute across the second dimension
% Create codistributed arrays.
RpriorChol = cell(nTotalRegionsAssignedToEachWorker, NUM_WORKERS, codistributionScheme);
KcB = cell(nTotalRegionsAssignedToEachWorker, NUM_WORKERS, codistributionScheme);
AtildePrevious = cell(nTotalRegionsAssignedToEachWorker, NUM_WORKERS, codistributionScheme);
wtildePrevious = cell(nTotalRegionsAssignedToEachWorker, NUM_WORKERS, codistributionScheme);
%logLikelihood = nan(nTotalRegionsAssignedToEachWorker, nWorkersUsed, codistributionScheme);
if isPredicting % If predicting, pre-allocate space for necessary quantities
posteriorPredictionMean = cell(nRegionsAtFinestLevelForEachWorker, NUM_WORKERS, codistributionScheme); % Only need to store values at finest resolution
posteriorPredictionVariance = cell(nRegionsAtFinestLevelForEachWorker, NUM_WORKERS, codistributionScheme); % Only need to store values at finest resolution
Btilde = cell(nRegionsAtFinestLevelForEachWorker, NUM_WORKERS, codistributionScheme); % Only need to store values at finest resolution
predictions = cell(nRegionsAtFinestLevelForEachWorker, NUM_WORKERS, codistributionScheme); % Only need to store values at finest resolution
RposteriorChol = cell(nTotalRegionsAssignedToEachWorker-nRegionsAtFinestLevelForEachWorker, NUM_WORKERS, codistributionScheme); % Doesn't need to include entries for finest resolution
KcholA = cell(nTotalRegionsAssignedToEachWorker-nRegionsAtFinestLevelForEachWorker, NUM_WORKERS, codistributionScheme); % Doesn't need to include finest resolution
Kcholw = cell(nTotalRegionsAssignedToEachWorker-nRegionsAtFinestLevelForEachWorker, NUM_WORKERS, codistributionScheme); % Doesn't need to include entries for finest resolution
else % Workaround to pass correct object to create_prior
predictionLocations = num2cell(nan(nTotalRegionsAssignedToEachWorker, NUM_WORKERS, codistributionScheme));
end
end
%%
if verbose
disp('Creating the prior in parallel ...')
end
%% Main spmd block to create prior and parallel portion of posterio
spmd(NUM_WORKERS)
%% First part of the MRA algorithm: Create prior from "coarsest to finest"
mCounterIndex = 1; % LB: potential room for optimization.
for iRow = 1 : nTotalRegionsAssignedToEachWorker
indexCurrent = indexMatrix(iRow, labindex);
% Find the ancestry for this jRegion
indexAncestry = find_ancestry(indexCurrent, nRegions, NUM_PARTITIONS_J);
% Fill vector with location of indexAncestry in indexMatrix
indexAncestryInIndexMatrixBool = ismember(indexMatrix(1:iRow, labindex), indexAncestry); % this works because the indices of the sub matrix do not change as we go down from top to bottom. Doesn't work when the submatrix goes from bottom to top in creating the posterior
indexAncestryInIndexMatrix = find(indexAncestryInIndexMatrixBool ~= 0); % keep only nonzeros which correspond to the indices of indexAncestry in indexMatrix
% Get local part of the objects needed to create the prior
knotsLocalPart = getLocalPart(knots([indexAncestryInIndexMatrix;iRow], labindex));
RpriorCholLocalPart = getLocalPart(RpriorChol(indexAncestryInIndexMatrix, labindex));
KcBLocalPart = getLocalPart(KcB(indexAncestryInIndexMatrix, labindex));
if indexCurrent < nRegions(NUM_LEVELS_M) % If not dealing with an index on the finest resolution...
% don't send create_prior any data or predictionLocations
[thisRpriorChol, thisKcholBchol, ~, ~, ~] = create_prior(theta, ...
domainGeometry, NUM_LEVELS_M, knotsLocalPart, RpriorCholLocalPart,...
KcBLocalPart, [], varEps, []);
else
dataLocalPart = getLocalPart(outputData(mCounterIndex, labindex));
predictionLocationsLocalPart = getLocalPart(predictionLocations(mCounterIndex, labindex));
% Create the prior
[thisRpriorChol, thisKcholBchol, thisAtj, thiswtj, thisRetLikPred] = create_prior(theta, ...
domainGeometry, NUM_LEVELS_M, knotsLocalPart, RpriorCholLocalPart,...
KcBLocalPart, dataLocalPart{:}, varEps, predictionLocationsLocalPart{:});
AtildePrevious(iRow, labindex) = {thisAtj};
wtildePrevious(iRow, labindex) = {thiswtj};
if isPredicting % If predicting
posteriorPredictionMean(mCounterIndex, labindex) = {thisRetLikPred{1}};
posteriorPredictionVariance(mCounterIndex, labindex) = {thisRetLikPred{2}};
Btilde(mCounterIndex, labindex) = {thisRetLikPred{3}};
else % If not predicting
logLikelihoodSum = logLikelihoodSum + thisRetLikPred;
end
mCounterIndex = mCounterIndex + 1;
end
RpriorChol(iRow, labindex) = {thisRpriorChol};
KcB(iRow, labindex) = {thisKcholBchol};
end
if verbose && labindex == 1
disp('Prior calculation complete.');
disp('Creating the prior in parallel ...');
end
%% Second part of MRA: Caclulate the poster from "finest to coarsest".
for iRow = lastRowBeforeFinestLevel:-1:maxLevelOnASingleRow
index = indexMatrix(iRow, labindex);
[indexChildren] = find_children(index, nRegions, NUM_PARTITIONS_J);
% Fill vector with location of indexAncestry in indexMatrix
indexChildrenInIndexMatrixBool = ismember(indexMatrix(:, labindex), indexChildren); % children must be further down in indexMtrix than iRow
indexChildrenInIndexMatrix = find(indexChildrenInIndexMatrixBool ~= 0); % keep only nonzeros which correspond to the indices of indexAncestry in indexMatrix
RpriorCholj = getLocalPart(RpriorChol(iRow, labindex));
wtildeChildren = getLocalPart(wtildePrevious(indexChildrenInIndexMatrix, labindex));
AtildeChildren = getLocalPart(AtildePrevious(indexChildrenInIndexMatrix, labindex));
% Calculate posterior_inference()
[ wtildeCurrentj, AtildeCurrentj, logLikelihoodj, ...
RposteriorCholj, Kcholwj, KcholAj ] = posterior_inference(RpriorCholj{:}, ...
wtildeChildren, AtildeChildren);
% LB: changed from wtileCurrent to wtildePrevious. Seems to be
% working however need to check back later
wtildePrevious(iRow,labindex) = {wtildeCurrentj};
AtildePrevious(iRow, labindex) = {AtildeCurrentj};
if isPredicting
RposteriorChol(iRow, labindex) = {RposteriorCholj};
Kcholw(iRow, labindex) = {Kcholwj};
KcholA(iRow, labindex) = {KcholAj};
else
logLikelihoodSum = logLikelihoodSum + logLikelihoodj;
end
end
end
% Progress indicator
if verbose
disp('Parallel section of the posterior complete.');
% Serial section of the posterior
disp('Calculating the serial section of the posterior ...');
end
%% "Serial Section"
% Now we do the serial section of the posterior.
% Want to minimize gathering from workers to clients. Also want
% to do "serial" portion as little as possible, so that we compute in
% parallel until the number of regions at the level is equal to NUM_WORKERS
% Below is code to only gather the subsets of the distributed matrices
% needed on the client. nd2sub() is to get the sub-scripting index of a sub-matrix, and then sub2ind() is for taking these subscripts and relating them to linear indices in the entire matrix.
% Gather Rprior first since only need this level's entries
[~, indicesForRpriorChol] = unique(indexMatrix(1:maxLevelOnASingleRow, :),'first');
[rowSerialPortionForRpriorChol, colSerialPortionForRpriorChol] = ind2sub(size(indexMatrix(1:maxLevelOnASingleRow, :)), indicesForRpriorChol );
gatheredRprioChol = gather(RpriorChol(sub2ind(size(RpriorChol), rowSerialPortionForRpriorChol, colSerialPortionForRpriorChol)));
% Gather wtildePrevious, AtildePrevious
maxRowOfDistributedArraysToRetrieve = maxLevelOnASingleRow + NUM_PARTITIONS_J;
indexMatrixSubset = indexMatrix(1:maxRowOfDistributedArraysToRetrieve, :);
[~, indicesForwtildeAndAtilde] = unique(indexMatrixSubset,'first');
[rowSerialPortionForwtildeAndAtilde, colSerialPortionForwtildeAndAtilde] = ind2sub(size(indexMatrixSubset), indicesForwtildeAndAtilde );
% wtildePrevious and AtildePrevious same size, so use one to get linear
% indices for both
linearIndicesForwtildeAndAtilde = sub2ind(size(wtildePrevious), rowSerialPortionForwtildeAndAtilde, colSerialPortionForwtildeAndAtilde);
gatheredwtildePrevious = gather(wtildePrevious(linearIndicesForwtildeAndAtilde));
gatheredAtildePrevious = gather(AtildePrevious(linearIndicesForwtildeAndAtilde));
% Gather logLikelikehoodSum - composite object used to track likelihood in
% spmd block
% Intialize sumLogLikelihood to collect distributed logLikelihoodSum
gatheredSum = gather(logLikelihoodSum);
sumLogLikelihood = sum(cellfun(@sum, gatheredSum(:)));
gatheredSum = []; % force freeing memory. small so may remove.
% Loop through remaining regions in serial
for iLevel = maxLevelOnASingleRow:-1:1
for jRegion = (cumulativeRegions(iLevel) - nRegions(iLevel) + 1) : cumulativeRegions(iLevel)
[ indexChildren ] = find_children( jRegion, nRegions, NUM_PARTITIONS_J );
% Calculate posterior quantities
RpriorCholj = gatheredRprioChol{jRegion};
wtildeChildren = gatheredwtildePrevious(indexChildren);
AtildeChildren = gatheredAtildePrevious(indexChildren);
% Calculate posterior_inference()
[ wtildeCurrentj, AtildeCurrentj, logLikelihoodj, ...
RposteriorCholj, Kcholwj, KcholAj ] = posterior_inference( RpriorCholj, ...
wtildeChildren, AtildeChildren );
gatheredwtildePrevious{jRegion} = wtildeCurrentj;
gatheredAtildePrevious{jRegion} = AtildeCurrentj;
[firstRowContainingThisRegion,firstColContainingThisRegion] = find(indexMatrixSubset(:,:)==jRegion, 1 );
nTimesEachIndexIsRepeatedThisRow = ceil(NUM_WORKERS/nRegions(iLevel));
if isPredicting % If predicting
RposteriorChol(firstRowContainingThisRegion, firstColContainingThisRegion:firstColContainingThisRegion + nTimesEachIndexIsRepeatedThisRow - 1) = {RposteriorCholj};
Kcholw(firstRowContainingThisRegion, firstColContainingThisRegion:firstColContainingThisRegion + nTimesEachIndexIsRepeatedThisRow - 1) = {Kcholwj};
KcholA(firstRowContainingThisRegion, firstColContainingThisRegion:firstColContainingThisRegion + nTimesEachIndexIsRepeatedThisRow - 1) = {KcholAj};
else
sumLogLikelihood = sumLogLikelihood + logLikelihoodj; % Update the sumLoglikelihood
end
end
end
% Force freeing up of memory
indexMatrixSubset = [];
if verbose
disp('Serial section of the posterior complete.');
end
%% Spatial prediction
if isPredicting
if verbose
disp('Beginning the spatial prediction ...')
end
spmd(NUM_WORKERS) % do prediction across cores
for iRow = lastRowBeforeFinestLevel+1:nTotalRegionsAssignedToEachWorker
mCounterIndex = iRow - lastRowBeforeFinestLevel;
if NUM_LEVELS_M > 0
% Set up appropriate indicies
index = indexMatrix(iRow, labindex);
indexAncestry = find_ancestry(index, nRegions,NUM_PARTITIONS_J);
% Fill vector with location of indexAncestry in indexMatrix
indexAncestryInIndexMatrixBool = ismember(indexMatrix(1:iRow, labindex), indexAncestry); % this works because the indices of the sub matrix do not change as we go down from top to bottom. Doesn't work when the submatrix goes from bottom to top in creating the posterior
indexAncestryInIndexMatrix = find(indexAncestryInIndexMatrixBool ~= 0); % keep only nonzeros which correspond to the indices of indexAncestry in indexMatrix
% Collect the appropriate inputs to make predictions at
% this region
thisPosteriorPredictionMean = getLocalPart(posteriorPredictionMean(mCounterIndex, labindex));
thisPosteriorPredictionVariance = getLocalPart(posteriorPredictionVariance(mCounterIndex, labindex));
thisBtilde = getLocalPart(Btilde(mCounterIndex, labindex));
thisRposteriorChol = getLocalPart(RposteriorChol(indexAncestryInIndexMatrix, labindex));
thisKcholA = getLocalPart(KcholA(indexAncestryInIndexMatrix, labindex));
thisKcholw = getLocalPart(Kcholw(indexAncestryInIndexMatrix, labindex));
% Use spatial_prediction() to make predictions. Place
% output into a cell by wrapping function in {}.
predictions(mCounterIndex,labindex) = {spatial_prediction(thisPosteriorPredictionMean{:}, ...
thisPosteriorPredictionVariance{:}, thisBtilde{:}, thisRposteriorChol, ...
thisKcholA, thisKcholw)};
else
predictions(mCounterIndex, labindex) = {[posteriorPredictionMean(mCounterIndex,labindex), posteriorVariance(mCounterIndex,labindex)]};
end
end
end
if verbose
disp('Spatial prediction complete.');
end
end
if verbose
disp('MRA.m execution complete.');
end
end