-
Notifications
You must be signed in to change notification settings - Fork 12
/
nj.c
150 lines (144 loc) · 4.73 KB
/
nj.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "tree.h"
#include "cpp_utils.h"
#include "utils.h"
/** \file nj.c
* \brief Utilities for the calculation of bootstrap values.
*
* This file also contains utilities for calculating bootstrap values. The use of
* hash idea accelerate the calculation by far. Constrained NJ has been moved to
* file nj2.c.
*/
/** \fn void tr_pre_bootstrap(Tree *tree, int is_node)
* \brief Fill Tree::ptr array and prepare for bootstrapping comparison.
* \param tree Binary tree to be processed.
* \param is_node Mode. 0 for the conventional branch mode and 1 for node mode.
*
* This function will fill tree::ptr as a integer array, storing the leaves
* a node covers. It will also calculate a magic number for each array to
* accelerate the array comparison in tr_update_bootstrap(). The time
* complexity is O(N^2).
*
* Note that this function, not like tr_compare_core() or tr_mmerge(), will
* not backup Tree::ptr. Any information ptr points to will be lost.
*/
void tr_pre_bootstrap(Tree *tree, int is_node)
{
Tree **node;
int m, i, j, l, n;
int magic, c;
int magica[3], ca[3], key0;
int *r, *q;
Tree *p;
if (tree == 0) return;
n = tree->n_leaf;
node = (Tree**)malloc(sizeof(Tree*) * n);
for (i = 0, key0 = 0; i < n; ++i) key0 ^= i;
m = tr_expand_internal_node(tree, node);
/* O(N^2) */
for (i = 0; i < m; ++i) {
p = node[i];
p->bs = 0; /* counter */
q = (int*)malloc(sizeof(int) * (n + 1));
p->ptr = q;
for (j = 0; j < n; ++j) q[j] = 0;
for (l = 0; l < 2; ++l) { /* only the first two nodes are handled */
magic = c = 0;
if (p->node[l]->n == 0) {
magic ^= p->node[l]->id;
++c;
q[p->node[l]->id] = l + 1; /* i.e. 1 for l=0 and 2 for l=1 */
} else {
r = (int*)p->node[l]->ptr;
for (j = 0; j < n; ++j) {
if (r[j]) {
magic ^= j; ++c;
q[j] = l + 1;
}
}
}
magica[l] = magic;
ca[l] = c;
}
magica[2] = key0 ^ magica[0] ^ magica[1];
ca[2] = n - ca[0] - ca[1];
if (is_node) { /* node mode. each branch connected with this node is correct */
for (l = 0, magic = 0; l < 3; ++l)
if (magica[l]*n+ca[l] > magic*n+c) { magic = magica[l]; c = ca[l]; }
} else { /* branch mode. the edge (n, n->parent) is correct */
magic = magica[0] ^ magica[1]; c = ca[0] + ca[1];
if (magica[2]*n+ca[2] > magic*n+c) { magic = magica[2]; c = ca[2]; };
}
q[n] = magic * n + c;
}
free(node);
}
/** \fn void tr_update_bootstrap(Tree *tree, const Tree *samp, int type)
* \brief Compare two trees and update Tree::bs.
* \param tree Tree to be updated.
* \param samp Resampled tree.
* \param is_node Mode. 0 for the conventional branch mode and 1 for node mode.
*
* This function compares a tree to a bootstrapped tree samp. If a node
* is supported by bootstraped tree, Tree::bs will be increased by one.
* The worst-case time complexity is O(N^3), but with the help of hash
* technology, the real complexity approaches O(N^2). If we use more
* hash, the time might be reduced to O(N). Nonetheless, I think the
* speed here is enough.
*
* Branch mode realizes the conventional method to calculate bootstrap
* values. Such values are actually calculated for a branch, instead of
* a node. Node mode is initiated by TreeBeST. It evaluates the
* accuracy of the tri-furcation at a node. So node mode is only applied
* for a binary tree, but it is more rigorous.
*/
void tr_update_bootstrap(Tree *tree, const Tree *samp, int is_node)
{
Tree **tnode, **snode, *p;
int i, j, k, tm, ts, n;
int key, t1, array[3];
int *q, *r;
if (tree == 0 || samp == 0) return;
if (tree->n_leaf != samp->n_leaf) {
fprintf(stderr, "[tr_update_bootstrap] not seem to be a resampled tree\n");
return;
}
n = tree->n_leaf;
tnode = (Tree**)malloc(sizeof(Tree*) * n);
snode = (Tree**)malloc(sizeof(Tree*) * n);
tm = tr_expand_internal_node(tree, tnode);
ts = tr_expand_internal_node(samp, snode);
/* is_bin = (tree->n > 2 || samp->n > 2)? 0 : 1; */
for (i = 0; i < tm; ++i) {
p = tnode[i];
q = (int*)tnode[i]->ptr;
key = q[n];
for (j = 0; j < ts; ++j) {
r = (int*)snode[j]->ptr;
if (!is_node) { /* branch mode */
if (key != r[n]) continue;
for (k = 0, t1 = 0; k < n; ++k)
if ((q[k] && r[k]) || (!q[k] && !r[k])) ++t1;
if (t1 == 0 || t1 == n) {
++(p->bs); r[n] = 0;
break;
}
} else { /* node mode */
if (key != r[n]) continue;
array[0] = array[1] = array[2] = -1;
for (k = 0; k < n; ++k) {
if (array[q[k]] < 0) array[q[k]] = r[k];
else if (array[q[k]] != r[k]) break;
}
if (k == n && array[0] + array[1] + array[2] == 0 + 1 + 2) {
++(p->bs); r[n] = 0;
break;
}
}
}
}
if (!is_node) tree->bs = -1; /* no bootstrap for root node in branch mode */
free(tnode); free(snode);
}