diff --git a/pypam/utils.py b/pypam/utils.py index 451650f..71de23b 100644 --- a/pypam/utils.py +++ b/pypam/utils.py @@ -898,3 +898,29 @@ def update_freq_cal(hydrophone, ds, data_var, **kwargs): ds_copy[data_var][i] = ds[data_var][i] + df['inc_value'].values return ds_copy + + +def hmb_to_decidecade(ds, data_var, fs, nfft): + # Convert back to upa for the sum operations + ds[data_var] = np.power(10, ds[data_var] / 10.0 - np.log10(1)) + fft_bin_width = fs / nfft + changing_frequency = 455 + bands_limits, bands_c = get_decidecade_limits(band=[changing_frequency + 1, 256000 / 2], nfft=nfft, fs=fs) + bands_limits_low, bands_c_low = get_decidecade_limits(band=[10, changing_frequency], nfft=nfft, fs=fs) + + # We need to split the dataset in two, the part which is below the changing frequency and the part which is above + low_psd = ds[data_var].where(ds.frequency <= changing_frequency, drop=True) + low_decidecade = spectra_ds_to_bands(low_psd, bands_limits_low, bands_c_low, fft_bin_width, db=False) + + high_psd = ds[data_var].where(ds.frequency > changing_frequency, drop=True) + high_decidecade = high_psd.groupby_bins('frequency', bins=bands_limits, labels=bands_c, right=True).sum() + bandwidths = np.diff(bands_limits) + high_decidecade = high_decidecade / bandwidths + + # Merge the low and the high decidecade psd + decidecade_psd = xarray.merge([{data_var: low_decidecade}, {data_var: high_decidecade}]) + # Convert back to db + decidecade_psd = 10 * np.log10(decidecade_psd) + + return decidecade_psd +