-
Notifications
You must be signed in to change notification settings - Fork 43
/
generator.py
85 lines (70 loc) · 3.19 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
from torch.utils.data import Dataset
import os
import numpy as np
from glob import glob
from torch.utils.data import Dataset
import copy
import augmentator as aug
class DentalModelGenerator(Dataset):
def __init__(self, data_dir=None, split_with_txt_path=None, aug_obj_str=None):
self.data_dir = data_dir
self.mesh_paths = glob(os.path.join(data_dir,"*_sampled_points.npy"))
if split_with_txt_path:
self.split_base_name_ls = []
f = open(split_with_txt_path, 'r')
while True:
line = f.readline()
if not line: break
self.split_base_name_ls.append(line.strip())
f.close()
temp_ls = []
for i in range(len(self.mesh_paths)):
p_id = os.path.basename(self.mesh_paths[i]).split("_")[0]
if p_id in self.split_base_name_ls:
temp_ls.append(self.mesh_paths[i])
self.mesh_paths = temp_ls
if aug_obj_str is not None:
self.aug_obj = eval(aug_obj_str)
else:
self.aug_obj = None
def __len__(self):
return len(self.mesh_paths)
def __getitem__(self, idx):
mesh_arr = np.load(self.mesh_paths[idx].strip())
output = {}
low_feat = mesh_arr.copy()[:,:6].astype("float32")
seg_label = mesh_arr.copy()[:,6:].astype("int")
seg_label -= 1 # -1 means gingiva, 0 means first incisor...
if self.aug_obj:
self.aug_obj.reload_vals()
"""
if aug.Flip == type(self.aug_obj.augmentation_list[0]) and \
self.aug_obj.augmentation_list[0].do_aug:
seg_label[seg_label>=8] = seg_label[seg_label>=8] - 805
seg_label[seg_label>=0] = seg_label[seg_label>=0] + 8
seg_label[seg_label<-500] = seg_label[seg_label<-500] + 805 - 8
"""
low_feat = self.aug_obj.run(low_feat)
low_feat = torch.from_numpy(low_feat)
low_feat = low_feat.permute(1,0)
output["feat"] = low_feat
seg_label = torch.from_numpy(seg_label)
seg_label = seg_label.permute(1,0)
output["gt_seg_label"] = seg_label
output["aug_obj"] = copy.deepcopy(self.aug_obj)
output["mesh_path"] = self.mesh_paths[idx]
return output
#for test
if __name__ == "__main__":
import gen_utils as gu
#data_generator = DentalModelGenerator("example_data/split_info/train_fold.txt", "aug.Augmentator([aug.Scaling([0.85, 1.15]), aug.Rotation([-30,30], 'fixed'), aug.Translation([-0.2, 0.2])])")
data_generator = DentalModelGenerator("example_data/processed_data", "aug.Augmentator([aug.Flip(), aug.Scaling([0.85, 1.15]), aug.Rotation([-30,30], 'fixed'), aug.Translation([-0.2, 0.2])])")
for batch in data_generator:
for key in batch.keys():
if type(batch[key]) == torch.Tensor:
print(key, batch[key].shape)
else:
print(key, batch[key])
gu.print_3d(gu.np_to_pcd_with_label(gu.torch_to_numpy(batch["feat"].T), gu.torch_to_numpy(batch["gt_seg_label"])))
gu.print_3d(gu.torch_to_numpy(batch["feat"].T))