Skip to content

Latest commit

 

History

History
173 lines (116 loc) · 12.6 KB

README.md

File metadata and controls

173 lines (116 loc) · 12.6 KB

Litestar Logo - Light Litestar Logo - Dark

Project Status
CI/CD CI
Community Reddit Discord Matrix Medium Twitter Blog
Meta Litestar Project License - MIT Litestar Sponsors linting - Ruff code style - Black

api-performance-tests

This is an API performance test comparing:

  1. Litestar
  2. Starlite v1.5x
  3. Starlette
  4. FastAPI
  5. Sanic
  6. BlackSheep

Using the bombardier HTTP benchmarking tool.

Test Setup

Setup is identical for all frameworks.

  • Applications reside in the frameworks folder and consist of a single file named <framework_name>_app.py

Tests

All tests are run sync and async

Serialization and data sending

Plaintext
  • Sending 100 bytes plaintext
  • Sending 1kB plaintext
  • Sending 10kB plaintext
  • Sending 100kB plaintext
  • Sending 500kB plaintext
  • Sending 1MB plaintext
  • Sending 5MB plaintext
JSON

Serializing a dictionary into JSON

  • Serializing and sending 1kB JSON
  • Serializing and sending 10kB JSON
  • Serializing and sending 100kB JSON
  • Serializing and sending 500kB JSON
  • Serializing and sending 1MB JSON
Serialization

(only supported by Litestar, Starlite, and FastAPI)

  • Serializing 50 dataclass objects each referencing 2 more dataclass objects
  • Serializing 100 dataclass objects each referencing 5 more dataclass objects
  • Serializing 500 dataclass objects each referencing 3 more dataclass objects
  • Serializing 50 pydantic objects each referencing 2 more pydantic objects
  • Serializing 100 pydantic objects each referencing 5 more pydantic objects
  • Serializing 500 pydantic objects each referencing 3 more pydantic objects
Files
  • Sending a 100 bytes binary file
  • Sending a 1kB bytes binary file
  • Sending a 50kB binary file
  • Sending a 1MB bytes binary file

Path amd query parameter handling

All responses return "No Content"

  • No path parameters
  • Single path parameter, coerced into an integer
  • Single query parameter, coerced into an integer
  • A path and a query parameters, coerced into integers

Dependency injection

(not supported by Starlette)

  • Resolving 3 nested synchronous dependencies
  • Resolving 3 nested asynchronous dependencies (only supported by Litestar, Starlite, and FastAPI)
  • Resolving 3 nested synchronous, and 3 nested asynchronous dependencies (only supported by Litestar, Starlite, and FastAPI)

Modifying responses

All responses return "No Content"

  • Setting response headers
  • Setting response cookies

Running the tests

Prerequisites

Running tests

  1. Clone this repo
  2. Run poetry install
  3. Run tests with poetry run bench run --rps --latency

After the run, the results will be stored in results/run_<run_mumber>.json

Selecting which frameworks to test

To select a framework, simply pass its name to the run command:

bench run --rps litestar starlite starlette fastapi

Selecting a framework version
  • A version available on PyPi: bench run --rps litestar@v2.0.0
  • A version from git: bench run --rps litestar@git+branch_or_tag_name
  • A version from a specific git repository: bench run --rps litestar@git+https://github.com/litestar-org/litestar.git@branch_or_tag_name
  • A local file: bench run --rps litestar@file+/path/to/litestar

Running a specific test

You can run a single test by specifying its full name and category:

bench run --rps litestar -t json:json-1K

Test Settings

-r, --rebuild rebuild docker images
-L, --latency run latency tests
-R, --rps run RPS tests
-w, --warmup duration of the warmup period (default: 5s)
-e, --endpoint mode [sync|async] endpoint types to select (default: sync, async)
-c, --endpoint-category [plaintext|json|files|params|dynamic-response|dependency-injection|serialization|post-json|post-body] test types to select (default: all)
-d, --duration duration of the rps benchmarks (default: 15s)
-l, --limit max requests per second for latency benchmarks (default: 20)
-r, --requests total number of requests for latency benchmarks (default: 1000)

Analyzing the results

  • Run bench results to generate plots from the latest test results
  • Run bench results -s to generate plots from the latest test results and split them into separate files for each category

Contributing

PRs are welcome.

Please make sure to install pre-commit on your system, and then execute pre-commit install in the repository root - this will ensure the pre-commit hooks are in place.

After doing this, add a PR with your changes and a clear description of the changes.