-
Notifications
You must be signed in to change notification settings - Fork 14
/
preconditioned_stochastic_gradient_descent.py
766 lines (673 loc) · 37.1 KB
/
preconditioned_stochastic_gradient_descent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
"""
* Created on Sat Aug 26 13:58:57 2017
* Updated in March, 2018: upgrade dense preconditioner so that it can handle a list of tensors
* Update in March, 2018: add a SCaling And Normalization (SCAN) preconditioner
Check Section IV.B in http://arxiv.org/abs/1803.09383 for details
Feature normalization is related to a specific form of preconditioner
We further scaling the output features. So I call it SCAN preconditioner
* Update in April, 2018: add sparse LU preconditioner; modified dense preconditioner code
remove diagonal loading
* Update in Dec. 2020: migrate to tf 2.0;
wrapped Kronecker product preconditioner for easy use: the code will select the proper Kronecker product
preconditioner based on the formats of input left and right preconditioners
Tensorflow functions for PSGD (Preconditioned SGD)
@author: XILIN LI, lixilinx@gmail.com
"""
import tensorflow as tf
dtype = tf.float32
# _tiny is the minimum normal positive number of dtype to avoid division by zero
_tiny = (lambda x=tf.constant(1, dtype=dtype), f=lambda x, f: f(x/2, f) if x/2>0 else x: f(x, f))( )
###############################################################################
def update_precond_dense(Q, dxs, dgs, step=tf.constant(0.01, dtype=dtype)):
"""
update dense preconditioner P = Q^T*Q
Q: Cholesky factor of preconditioner
dxs: a list of random perturbation on parameters
dgs: a list of resultant perturbation on gradients
step: update step size
"""
dx = tf.concat([tf.reshape(x, [-1, 1]) for x in dxs], 0) # a tall column vector
dg = tf.concat([tf.reshape(g, [-1, 1]) for g in dgs], 0) # a tall column vector
# refer to the PSGD paper ...
a = tf.matmul(Q, dg)
b = tf.linalg.triangular_solve(Q, dx, lower=False, adjoint=True)
grad = tf.linalg.band_part(tf.matmul(a, a, transpose_b=True) - tf.matmul(b, b, transpose_b=True), 0, -1)
step0 = step/(tf.reduce_max(tf.abs(grad)) + _tiny)
return Q - tf.matmul(step0*grad, Q)
def precond_grad_dense(Q, grads):
"""
return preconditioned gradient with dense preconditioner
Q: Cholesky factor of preconditioner
grads: a list of gradients to be preconditioned
"""
grad = [tf.reshape(g, [-1, 1]) for g in grads] # a list of column vector
lens = [g.shape[0] for g in grad] # length of each column vector
grad = tf.concat(grad, 0) # a tall column vector
pre_grad = tf.matmul(Q, tf.matmul(Q, grad), transpose_a=True)
pre_grads = [] # restore pre_grad to its original shapes
idx = 0
for i in range(len(grads)):
pre_grads.append(tf.reshape(pre_grad[idx : idx + lens[i]], tf.shape(grads[i])))
idx = idx + lens[i]
return pre_grads
###############################################################################
@tf.function(input_signature=(tf.TensorSpec(shape=[None,None], dtype=dtype),
tf.TensorSpec(shape=[None,None], dtype=dtype),
tf.TensorSpec(shape=[None,None], dtype=dtype),
tf.TensorSpec(shape=[None,None], dtype=dtype),
tf.TensorSpec(shape=[ ], dtype=dtype),))
def update_precond_kron(Ql, Qr, dX, dG, step=tf.constant(0.01, dtype=dtype)):
"""
Update Kronecker product preconditioner P = kron_prod(Qr^T*Qr, Ql^T*Ql)
Either Ql or Qr can be sparse, and the code can choose the right update rule.
dX: perturbation of (matrix) parameter
dG: perturbation of (matrix) gradient
step: update step size
"""
m, n = tf.shape(Ql)[0], tf.shape(Ql)[1] # dynamic tf.shape(tensor) vs static tensor.shape
p, q = tf.shape(Qr)[0], tf.shape(Qr)[1]
if m==n: # left is dense
if p==q: #(dense, dense) format
return _update_precond_dense_dense(Ql, Qr, dX, dG, step)
elif p==2: # (dense, normalization) format
return _update_precond_norm_dense(Qr, Ql, tf.transpose(dX), tf.transpose(dG), step)[::-1]
elif p==1: # (dense, scaling) format
return _update_precond_dense_scale(Ql, Qr, dX, dG, step)
else:
tf.print('Unknown Kronecker product preconditioner, no update')
return Ql, Qr#raise Exception('Unknown Kronecker product preconditioner')
elif m==2: # left is normalization
if p==q: # (normalization, dense) format
return _update_precond_norm_dense(Ql, Qr, dX, dG, step)
elif p==1: # (normalization, scaling) format
return _update_precond_norm_scale(Ql, Qr, dX, dG, step)
else:
tf.print('Unknown Kronecker product preconditioner, no update')
return Ql, Qr#raise Exception('Unknown Kronecker product preconditioner')
elif m==1: # left is scaling
if p==q: # (scaling, dense) format
return _update_precond_dense_scale(Qr, Ql, tf.transpose(dX), tf.transpose(dG), step)[::-1]
elif p==2: # (scaling, normalization) format
return _update_precond_norm_scale(Qr, Ql, tf.transpose(dX), tf.transpose(dG), step)[::-1]
else:
tf.print('Unknown Kronecker product preconditioner, no update')
return Ql, Qr#raise Exception('Unknown Kronecker product preconditioner')
else:
tf.print('Unknown Kronecker product preconditioner, no update')
return Ql, Qr#raise Exception('Unknown Kronecker product preconditioner')
@tf.function(input_signature=(tf.TensorSpec(shape=[None,None], dtype=dtype),
tf.TensorSpec(shape=[None,None], dtype=dtype),
tf.TensorSpec(shape=[None,None], dtype=dtype),))
def precond_grad_kron(Ql, Qr, Grad):
"""
return preconditioned gradient using Kronecker product preconditioner P = kron_prod(Qr^T*Qr, Ql^T*Ql)
Either Ql or Qr can be sparse, and the code can choose the right way to precondition the gradient
Grad: (matrix) gradient
"""
m, n = tf.shape(Ql)[0], tf.shape(Ql)[1] # use the dynamic shape here
p, q = tf.shape(Qr)[0], tf.shape(Qr)[1]
if m==n: # left is dense
if p==q: #(dense, dense) format
return _precond_grad_dense_dense(Ql, Qr, Grad)
elif p==2: # (dense, normalization) format
return tf.transpose(_precond_grad_norm_dense(Qr, Ql, tf.transpose(Grad)))
elif p==1: # (dense, scaling) format
return _precond_grad_dense_scale(Ql, Qr, Grad)
else:
tf.print('Unknown Kronecker product preconditioner, no preconditioning')
return Grad#raise Exception('Unknown Kronecker product preconditioner')
elif m==2: # left is normalization
if p==q: # (normalization, dense) format
return _precond_grad_norm_dense(Ql, Qr, Grad)
elif p==1: # (normalization, scaling) format
return _precond_grad_norm_scale(Ql, Qr, Grad)
else:
tf.print('Unknown Kronecker product preconditioner, no preconditioning')
return Grad#raise Exception('Unknown Kronecker product preconditioner')
elif m==1: # left is scaling
if p==q: # (scaling, dense) format
return tf.transpose(_precond_grad_dense_scale(Qr, Ql, tf.transpose(Grad)))
elif p==2: # (scaling, normalization) format
return tf.transpose(_precond_grad_norm_scale(Qr, Ql, tf.transpose(Grad)))
else:
tf.print('Unknown Kronecker product preconditioner, no preconditioning')
return Grad#raise Exception('Unknown Kronecker product preconditioner')
else:
tf.print('Unknown Kronecker product preconditioner, no preconditioning')
return Grad#raise Exception('Unknown Kronecker product preconditioner')
###############################################################################
def _update_precond_dense_dense(Ql, Qr, dX, dG, step=tf.constant(0.01, dtype=dtype)):
"""
update Kronecker product preconditioner P = kron_prod(Qr^T*Qr, Ql^T*Ql)
Ql: (left side) Cholesky factor of preconditioner
Qr: (right side) Cholesky factor of preconditioner
dX: perturbation of (matrix) parameter
dG: perturbation of (matrix) gradient
step: update step size
"""
# make sure that Ql and Qr have similar dynamic range (optional)
max_l = tf.reduce_max(tf.linalg.diag_part(Ql))
max_r = tf.reduce_max(tf.linalg.diag_part(Qr))
rho = tf.sqrt(max_l/max_r)
Ql = Ql/rho
Qr = rho*Qr
# refer to the PSGD paper...
A = tf.matmul(Ql, tf.matmul(dG, Qr, transpose_b=True))
Bt = tf.linalg.triangular_solve(Ql, tf.transpose(tf.linalg.triangular_solve(Qr, tf.transpose(dX), lower=False, adjoint=True)), lower=False, adjoint=True)
grad1 = tf.linalg.band_part(tf.matmul(A, A, transpose_b=True) - tf.matmul(Bt, Bt, transpose_b=True), 0, -1)
grad2 = tf.linalg.band_part(tf.matmul(A, A, transpose_a=True) - tf.matmul(Bt, Bt, transpose_a=True), 0, -1)
step1 = step/(tf.reduce_max(tf.abs(grad1)) + _tiny)
step2 = step/(tf.reduce_max(tf.abs(grad2)) + _tiny)
return Ql - tf.matmul(step1*grad1, Ql), Qr - tf.matmul(step2*grad2, Qr)
def _precond_grad_dense_dense(Ql, Qr, Grad):
"""
return preconditioned gradient using Kronecker product preconditioner
Ql: (left side) Cholesky factor of preconditioner
Qr: (right side) Cholesky factor of preconditioner
Grad: (matrix) gradient
"""
if tf.shape(Grad)[0] < tf.shape(Grad)[1]:
return tf.matmul(tf.matmul(tf.matmul(tf.matmul(Ql, Ql, transpose_a=True), Grad), Qr, transpose_b=True), Qr)
else:
return tf.matmul(Ql, tf.matmul(Ql, tf.matmul(Grad, tf.matmul(Qr, Qr, transpose_a=True))), transpose_a=True)
###############################################################################
# (normalization, dense) Kronecker product preconditioner
# the left one is a normalization preconditioner; the right one is a dense preconditioner
def _update_precond_norm_dense(ql, Qr, dX, dG, step=tf.constant(0.01, dtype=dtype)):
"""
update (normalization, dense) preconditioner P = kron_prod(Qr^T*Qr, Ql^T*Ql), where
dX and dG have shape (M, N)
ql has shape (2, M)
Qr has shape (N, N)
ql[0] is the diagonal part of Ql
ql[1, 0:-1] is the last column of Ql, excluding the last entry
dX is perturbation of (matrix) parameter
dG is perturbation of (matrix) gradient
step: update step size
"""
# make sure that Ql and Qr have similar dynamic range (optional)
max_l = tf.reduce_max(ql[0])
max_r = tf.reduce_max(tf.linalg.diag_part(Qr))
rho = tf.sqrt(max_l/max_r)
ql = ql/rho
Qr = rho*Qr
# refer to https://arxiv.org/abs/1512.04202 for details
A = tf.transpose(ql[0:1])*dG
A = A + tf.matmul(ql[1:], dG[-1:], transpose_a=True) # Ql*dG
A = tf.matmul(A, Qr, transpose_b=True) # Ql*dG*Qr^T
# inverse of Ql. Suppose
# Ql=[a, 0, m;
# 0, b, n;
# 0, 0, c]
# then
# inv(Ql)=[1/a, 0, -m/a/c;
# 0, 1/b, -n/b/c;
# 0, 0, 1/c]
Bt = tf.transpose(1.0/ql[0:1])*dX
Bt = tf.concat([Bt[:-1],
Bt[-1:] - tf.matmul(ql[1:]/(ql[0:1]*ql[0,-1]), dX)], axis=0) # Ql^(-T)*dX
Bt = tf.transpose(tf.linalg.triangular_solve(Qr, tf.transpose(Bt), lower=False, adjoint=True)) # Ql^(-T)*dX*Qr^(-1)
grad1_diag = tf.reduce_sum(A*A, axis=1) - tf.reduce_sum(Bt*Bt, axis=1)
grad1_bias = tf.matmul(A[:-1], A[-1:], transpose_b=True) - tf.matmul(Bt[:-1], Bt[-1:], transpose_b=True)
grad1_bias = tf.concat([tf.squeeze(grad1_bias), [0.0]], axis=0)
step1 = step/(tf.maximum(tf.reduce_max(tf.abs(grad1_diag)), tf.reduce_max(tf.abs(grad1_bias))) + _tiny)
new_ql0 = ql[0] - step1*grad1_diag*ql[0]
new_ql1 = ql[1] - step1*(grad1_diag*ql[1] + ql[0,-1]*grad1_bias)
grad2 = tf.linalg.band_part(tf.matmul(A, A, transpose_a=True) - tf.matmul(Bt, Bt, transpose_a=True), 0, -1)
step2 = step/(tf.reduce_max(tf.abs(grad2)) + _tiny)
return tf.stack((new_ql0, new_ql1)), Qr - tf.matmul(step2*grad2, Qr)
def _precond_grad_norm_dense(ql, Qr, Grad):
"""
return preconditioned gradient using (normalization, dense) Kronecker product preconditioner
Suppose Grad has shape (M, N)
ql[0] is the diagonal part of Ql
ql[1, 0:-1] is the last column of Ql, excluding the last entry
Qr: shape (N, N), Cholesky factor of right preconditioner
Grad: (matrix) gradient
"""
preG = tf.transpose(ql[0:1])*Grad
preG = preG + tf.matmul(ql[1:], Grad[-1:], transpose_a=True) # Ql*Grad
if tf.shape(preG)[0] < tf.shape(preG)[1]:
preG = tf.matmul(tf.matmul(preG, Qr, transpose_b=True), Qr) # Ql*Grad*Qr^T*Qr
else:
preG = tf.matmul(preG, tf.matmul(Qr, Qr, transpose_a=True)) # Ql*Grad*Qr^T*Qr
add_last_row = tf.matmul(ql[1:], preG) # use it to modify the last row
preG = tf.transpose(ql[0:1])*preG
preG = tf.concat([preG[:-1],
preG[-1:] + add_last_row], axis=0) # Ql^T*Ql*Grad*Qr^T*Qr
return preG
###############################################################################
# (dense, scaling) Kronecker product preconditioner
# the left side is a dense preconditioner; the right side is a scaling preconditioner
def _update_precond_dense_scale(Ql, qr, dX, dG, step=tf.constant(0.01, dtype=dtype)):
"""
update (dense, scaling) preconditioner P = kron_prod(Qr^T*Qr, Ql^T*Ql), where
dX and dG have shape (M, N)
Ql has shape (M, M)
qr has shape (1, N)
qr is the diagonal part of Qr
dX is perturbation of (matrix) parameter
dG is perturbation of (matrix) gradient
step: update step size
"""
# make sure that Ql and Qr have similar dynamic range (optional)
max_l = tf.reduce_max(tf.linalg.diag_part(Ql))
max_r = tf.reduce_max(qr) # qr always is positive
rho = tf.sqrt(max_l/max_r)
Ql = Ql/rho
qr = rho*qr
# refer to https://arxiv.org/abs/1512.04202 for details
A = tf.matmul(Ql, dG) # Ql*dG
A = A*qr # Ql*dG*Qr^T
Bt = tf.linalg.triangular_solve(Ql, dX, lower=False, adjoint=True) # Ql^(-T)*dX
Bt = Bt*(1.0/qr) # Ql^(-T)*dX*Qr^(-1)
grad1 = tf.linalg.band_part(tf.matmul(A, A, transpose_b=True) - tf.matmul(Bt, Bt, transpose_b=True), 0, -1)
step1 = step/(tf.reduce_max(tf.abs(grad1)) + _tiny)
grad2 = tf.reduce_sum(A*A, axis=0, keepdims=True) - tf.reduce_sum(Bt*Bt, axis=0, keepdims=True)
step2 = step/(tf.reduce_max(tf.abs(grad2)) + _tiny)
return Ql - tf.matmul(step1*grad1, Ql), qr - step2*grad2*qr
def _precond_grad_dense_scale(Ql, qr, Grad):
"""
return preconditioned gradient using (dense, scaling) Kronecker product preconditioner
Suppose Grad has shape (M, N)
Ql: shape (M, M), (left side) Cholesky factor of preconditioner
qr: shape (1, N), defines a diagonal matrix for output feature scaling
Grad: (matrix) gradient
"""
if tf.shape(Grad)[0] < tf.shape(Grad)[1]:
preG = tf.matmul(tf.matmul(Ql, Ql, transpose_a=True), Grad) # Ql^T*Ql*Grad
else:
preG = tf.matmul(Ql, tf.matmul(Ql, Grad), transpose_a=True) # Ql^T*Ql*Grad
return preG*(qr*qr) # Ql^T*Ql*Grad*Qr^T*Qr
###############################################################################
# (normalization, scaling) Kronecker product preconditioner
# the left one is a normalization preconditioner; the right one is a scaling preconditioner
def _update_precond_norm_scale(ql, qr, dX, dG, step=tf.constant(0.01, dtype=dtype)):
"""
update (normalization, scaling) preconditioner P = kron_prod(Qr^T*Qr, Ql^T*Ql), where
dX and dG have shape (M, N)
ql has shape (2, M)
qr has shape (1, N)
ql[0] is the diagonal part of Ql
ql[1, 0:-1] is the last column of Ql, excluding the last entry
qr is the diagonal part of Qr
dX is perturbation of (matrix) parameter
dG is perturbation of (matrix) gradient
step: update step size
"""
# make sure that Ql and Qr have similar dynamic range (optional)
max_l = tf.reduce_max(ql[0])
max_r = tf.reduce_max(qr) # qr always is positive
rho = tf.sqrt(max_l/max_r)
ql = ql/rho
qr = rho*qr
# refer to https://arxiv.org/abs/1512.04202 for details
A = tf.transpose(ql[0:1])*dG
A = A + tf.matmul(ql[1:], dG[-1:], transpose_a=True) # Ql*dG
A = A*qr # Ql*dG*Qr^T
Bt = tf.transpose(1.0/ql[0:1])*dX
Bt = tf.concat([Bt[:-1],
Bt[-1:] - tf.matmul(ql[1:]/(ql[0:1]*ql[0,-1]), dX)], axis=0) # Ql^(-T)*dX
Bt = Bt*(1.0/qr) # Ql^(-T)*dX*Qr^(-1)
grad1_diag = tf.reduce_sum(A*A, axis=1) - tf.reduce_sum(Bt*Bt, axis=1)
grad1_bias = tf.matmul(A[:-1], A[-1:], transpose_b=True) - tf.matmul(Bt[:-1], Bt[-1:], transpose_b=True)
grad1_bias = tf.concat([tf.squeeze(grad1_bias), [0.0]], axis=0)
step1 = step/(tf.maximum(tf.reduce_max(tf.abs(grad1_diag)), tf.reduce_max(tf.abs(grad1_bias))) + _tiny)
new_ql0 = ql[0] - step1*grad1_diag*ql[0]
new_ql1 = ql[1] - step1*(grad1_diag*ql[1] + ql[0,-1]*grad1_bias)
grad2 = tf.reduce_sum(A*A, axis=0, keepdims=True) - tf.reduce_sum(Bt*Bt, axis=0, keepdims=True)
step2 = step/(tf.reduce_max(tf.abs(grad2)) + _tiny)
return tf.stack((new_ql0, new_ql1)), qr - step2*grad2*qr
def _precond_grad_norm_scale(ql, qr, Grad):
"""
return preconditioned gradient using (normalization, scaling) Kronecker product preconditioner
Suppose Grad has shape (M, N)
ql has shape (2, M)
qr has shape (1, N)
ql[0] is the diagonal part of Ql
ql[1, 0:-1] is the last column of Ql, excluding the last entry
qr is the diagonal part of Qr
Grad: (matrix) gradient
"""
preG = tf.transpose(ql[0:1])*Grad
preG = preG + tf.matmul(ql[1:], Grad[-1:], transpose_a=True) # Ql*Grad
preG = preG*(qr*qr) # Ql*Grad*Qr^T*Qr
add_last_row = tf.matmul(ql[1:], preG) # use it to modify the last row
preG = tf.transpose(ql[0:1])*preG
preG = tf.concat([preG[:-1],
preG[-1:] + add_last_row], axis=0) # Ql^T*Ql*Grad*Qr^T*Qr
return preG
###############################################################################
def update_precond_splu(L12, l3, U12, u3, dxs, dgs, step=tf.constant(0.01, dtype=dtype)):
"""
update sparse LU preconditioner P = Q^T*Q, where
Q = L*U,
L12 = [L1; L2]
U12 = [U1, U2]
L = [L1, 0; L2, diag(l3)]
U = [U1, U2; 0, diag(u3)]
l3 and u3 are column vectors
dxs: a list of random perturbation on parameters
dgs: a list of resultant perturbation on gradients
step: update step size
"""
# make sure that L and U have similar dynamic range (optional)
max_l = tf.maximum(tf.reduce_max(tf.linalg.diag_part(L12)), tf.reduce_max(l3))
max_u = tf.maximum(tf.reduce_max(tf.linalg.diag_part(U12)), tf.reduce_max(u3))
rho = tf.sqrt(max_l/max_u)
L12 = L12/rho
l3 = l3/rho
U12 = rho*U12
u3 = rho*u3
# extract blocks
r = U12.shape[0]
L1 = L12[:r]
L2 = L12[r:]
U1 = U12[:, :r]
U2 = U12[:, r:]
dx = tf.concat([tf.reshape(x, [-1, 1]) for x in dxs], 0) # a tall column vector
dg = tf.concat([tf.reshape(g, [-1, 1]) for g in dgs], 0) # a tall column vector
# U*dg
Ug1 = tf.matmul(U1, dg[:r]) + tf.matmul(U2, dg[r:])
Ug2 = u3*dg[r:]
# Q*dg
Qg1 = tf.matmul(L1, Ug1)
Qg2 = tf.matmul(L2, Ug1) + l3*Ug2
# inv(U^T)*dx
iUtx1 = tf.linalg.triangular_solve(U1, dx[:r], lower=False, adjoint=True)
iUtx2 = (dx[r:] - tf.matmul(U2, iUtx1, transpose_a=True))/u3
# inv(Q^T)*dx
iQtx2 = iUtx2/l3
iQtx1 = tf.linalg.triangular_solve(L1, iUtx1 - tf.matmul(L2, iQtx2, transpose_a=True), lower=True, adjoint=True)
# L^T*Q*dg
LtQg1 = tf.matmul(L1, Qg1, transpose_a=True) + tf.matmul(L2, Qg2, transpose_a=True)
LtQg2 = l3*Qg2
# P*dg
Pg1 = tf.matmul(U1, LtQg1, transpose_a=True)
Pg2 = tf.matmul(U2, LtQg1, transpose_a=True) + u3*LtQg2
# inv(L)*inv(Q^T)*dx
iLiQtx1 = tf.linalg.triangular_solve(L1, iQtx1, lower=True)
iLiQtx2 = (iQtx2 - tf.matmul(L2, iLiQtx1))/l3
# inv(P)*dx
iPx2 = iLiQtx2/u3
iPx1 = tf.linalg.triangular_solve(U1, iLiQtx1 - tf.matmul(U2, iPx2), lower=False)
# update L
grad1 = tf.matmul(Qg1, Qg1, transpose_b=True) - tf.matmul(iQtx1, iQtx1, transpose_b=True)
grad1 = tf.linalg.band_part(grad1, -1, 0)
grad2 = tf.matmul(Qg2, Qg1, transpose_b=True) - tf.matmul(iQtx2, iQtx1, transpose_b=True)
grad3 = Qg2*Qg2 - iQtx2*iQtx2
max_abs_grad = tf.reduce_max(tf.abs(grad1))
max_abs_grad = tf.maximum(max_abs_grad, tf.reduce_max(tf.abs(grad2)))
max_abs_grad = tf.maximum(max_abs_grad, tf.reduce_max(tf.abs(grad3)))
step0 = step/(max_abs_grad + _tiny)
newL1 = L1 - tf.matmul(step0*grad1, L1)
newL2 = L2 - tf.matmul(step0*grad2, L1) - step0*grad3*L2
newl3 = l3 - step0*grad3*l3
# update U
grad1 = tf.matmul(Pg1, dg[:r], transpose_b=True) - tf.matmul(dx[:r], iPx1, transpose_b=True)
grad1 = tf.linalg.band_part(grad1, 0, -1)
grad2 = tf.matmul(Pg1, dg[r:], transpose_b=True) - tf.matmul(dx[:r], iPx2, transpose_b=True)
grad3 = Pg2*dg[r:] - dx[r:]*iPx2
max_abs_grad = tf.reduce_max(tf.abs(grad1))
max_abs_grad = tf.maximum(max_abs_grad, tf.reduce_max(tf.abs(grad2)))
max_abs_grad = tf.maximum(max_abs_grad, tf.reduce_max(tf.abs(grad3)))
step0 = step/(max_abs_grad + _tiny)
newU1 = U1 - tf.matmul(U1, step0*grad1)
newU2 = U2 - tf.matmul(U1, step0*grad2) - step0*tf.transpose(grad3)*U2
newu3 = u3 - step0*grad3*u3
return tf.concat([newL1, newL2], axis=0), newl3, tf.concat([newU1, newU2], axis=1), newu3
def precond_grad_splu(L12, l3, U12, u3, grads):
"""
return preconditioned gradient with sparse LU preconditioner
where P = Q^T*Q,
Q = L*U,
L12 = [L1; L2]
U12 = [U1, U2]
L = [L1, 0; L2, diag(l3)]
U = [U1, U2; 0, diag(u3)]
l3 and u3 are column vectors
grads: a list of gradients to be preconditioned
"""
grad = [tf.reshape(g, [-1, 1]) for g in grads] # a list of column vector
lens = [g.shape[0] for g in grad] # length of each column vector
grad = tf.concat(grad, 0) # a tall column vector
r = U12.shape[0]
L1 = L12[:r]
L2 = L12[r:]
U1 = U12[:, :r]
U2 = U12[:, r:]
# U*g
Ug1 = tf.matmul(U1, grad[:r]) + tf.matmul(U2, grad[r:])
Ug2 = u3*grad[r:]
# Q*g
Qg1 = tf.matmul(L1, Ug1)
Qg2 = tf.matmul(L2, Ug1) + l3*Ug2
# L^T*Q*g
LtQg1 = tf.matmul(L1, Qg1, transpose_a=True) + tf.matmul(L2, Qg2, transpose_a=True)
LtQg2 = l3*Qg2
# P*g
pre_grad = tf.concat([tf.matmul(U1, LtQg1, transpose_a=True),
tf.matmul(U2, LtQg1, transpose_a=True) + u3*LtQg2], axis=0)
pre_grads = [] # restore pre_grad to its original shapes
idx = 0
for i in range(len(grads)):
pre_grads.append(tf.reshape(pre_grad[idx : idx + lens[i]], tf.shape(grads[i])))
idx = idx + lens[i]
return pre_grads
##############################################################################
#
# The low-rank modification (UVd) preconditioner is defined by
#
# Q = (I + U*V')*diag(d)
#
# which, after reparameterization, is equivalent to form
#
# diag(d) + U*V'
#
# It relates to the LM-BFGS and conjugate gradient methods.
#
def IpUVtmatvec(U, V, x):
"""
Returns (I + U*V')*x. All variables are either matrices or column vectors.
"""
return x + tf.matmul(U, tf.matmul(V, x, transpose_a=True))
# def IpUVtsolve(U, V, x):
# """
# Returns inv(I + U*V')*x. All variables are either matrices or column vectors.
# """
# VtU = tf.matmul(V, U, transpose_a=True)
# return x - tf.matmul(U, tf.linalg.solve(tf.eye(tf.size(VtU[0])) + VtU,
# tf.matmul(V, x, transpose_a=True)))
def update_precond_UVd_math_(U, V, d, v, h, step, tiny):
"""
Update preconditioner Q = (I + U*V')*diag(d) with (vector, Hessian-vector product) = (v, h).
State variables U, V and d are updated inplace.
U, V, d, v, and h are either matrices or column vectors.
"""
# balance the numerical dynamic ranges of U and V; optional
if tf.random.uniform([]) < 0.01:
maxU = tf.reduce_max(tf.abs(U))
maxV = tf.reduce_max(tf.abs(V))
rho = tf.sqrt(maxU/maxV)
U.assign(U/rho)
V.assign(rho*V)
Qh = IpUVtmatvec(U, V, d*h)
Ph = d*IpUVtmatvec(V, U, Qh)
# invQtv = IpUVtsolve(V, U, v/d)
# invPv = IpUVtsolve(U, V, invQtv)/d
VtU = tf.matmul(V, U, transpose_a=True)
IpVtU = tf.eye(tf.size(VtU[0]), dtype=VtU.dtype) + VtU
invQtv = v/d
invQtv = invQtv - tf.matmul(V, tf.linalg.solve(IpVtU, tf.matmul(U, invQtv, transpose_a=True), adjoint=True))
invPv = invQtv - tf.matmul(U, tf.linalg.solve(IpVtU, tf.matmul(V, invQtv, transpose_a=True)))
invPv = invPv/d
nablaD = Ph*h - v*invPv
mu = step/(tf.reduce_max(tf.abs(nablaD)) + tiny)
# d = d - mu*d*nablaD
d.assign_sub(mu*d*nablaD)
# update either U or V, not both at the same time
a, b = Qh, invQtv
if tf.random.uniform([]) < 0.5:
atV = tf.matmul(a, V, transpose_a=True)
atVVt = tf.matmul(atV, V, transpose_b=True)
btV = tf.matmul(b, V, transpose_a=True)
btVVt = tf.matmul(btV, V, transpose_b=True)
# taking abs before sqrt to avoid sqrt(-0.0...)
norm = tf.sqrt(tf.abs( tf.matmul(a,a,transpose_a=True) * tf.matmul(atVVt, atVVt, transpose_b=True)
+tf.matmul(b,b,transpose_a=True) * tf.matmul(btVVt, btVVt, transpose_b=True)
-2*tf.matmul(a,b,transpose_a=True) * tf.matmul(atVVt, btVVt, transpose_b=True) ))
mu = step/(norm + tiny)
# U = U - mu*( tf.matmul(a, tf.matmul(atV, IpVtU))
# -tf.matmul(b, tf.matmul(btV, IpVtU)) )
U.assign_sub(mu*( tf.matmul(a, tf.matmul(atV, IpVtU))
-tf.matmul(b, tf.matmul(btV, IpVtU)) ))
else:
atU = tf.matmul(a, U, transpose_a=True)
btU = tf.matmul(b, U, transpose_a=True)
UUta = tf.matmul(U, atU, transpose_b=True)
UUtb = tf.matmul(U, btU, transpose_b=True)
# taking abs before sqrt to avoid sqrt(-0.0...)
norm = tf.sqrt(tf.abs( (tf.matmul(UUta, UUta, transpose_a=True)) * (tf.matmul(a, a, transpose_a=True))
+(tf.matmul(UUtb, UUtb, transpose_a=True)) * (tf.matmul(b, b, transpose_a=True))
-2*(tf.matmul(UUta, UUtb, transpose_a=True)) * (tf.matmul(a, b, transpose_a=True)) ))
mu = step/(norm + tiny)
# V = V - mu*( tf.matmul(a + tf.matmul(V, atU, transpose_b=True), atU)
# -tf.matmul(b + tf.matmul(V, btU, transpose_b=True), btU) )
V.assign_sub(mu*( tf.matmul(a + tf.matmul(V, atU, transpose_b=True), atU)
-tf.matmul(b + tf.matmul(V, btU, transpose_b=True), btU) ))
# return [U, V, d]
def precond_grad_UVd_math(U, V, d, g):
"""
Preconditioning gradient g with Q = (I + U*V')*diag(d).
All variables here are either matrices or column vectors.
"""
g = IpUVtmatvec(U, V, d*g)
g = d*IpUVtmatvec(V, U, g)
return g
class UVd:
"""
Implements low-rank modification (UVd) preconditioner, Q = U*V' + diag(d), as a class.
Args for initialization:
params_with_grad: a list of parameters or variables requiring gradients;
rank_of_modification: rank of modification, i.e., rank of U or V;
preconditioner_init_scale: initial scale of Q, or roughly, Q = preconditioner_init_scale*eye();
lr_params: normalized learning rate for parameters in range [0, 1];
lr_preconditioner: normalized learning rate for preconditioner in range [0, 1];
grad_clip_max_norm: maximum allowable gradient norm after clipping, None or np.inf for no clipping;
preconditioner_update_probability: probability on updating Q, 1 for updating at every step, and 0 for never;
exact_hessian_vector_product: True for exact Hessian-vector product via 2nd derivative,
and False for approximated one via finite-difference formulae.
Notes:
Note 1: The Hessian-vector product can be approximated using the finite-difference formulae by setting
exact_hessian_vector_product = False when the 2nd derivatives is not available.
In this case, make sure that the closure produces the same outputs given the same inputs,
except for numerical errors due to non-deterministic behaviors.
Random numbers, if any, used inside the closure should be generated starting from the same seed,
e.g., by setting it with `tf.random.set_seed', where the seed can be generated from a numpy rng.
Note 2: `tf.linalg.solve' is called twice in function `update_precond_UVd_math_'.
Certain solver could be orders of magnitude faster than others, especially for small matrices (see the pdf file).
Considering replace it with faster ones if the default solver is too slow.
Note 3: currently, no support of sparse and mixed-precision gradients.
Half precision is supported except that tf.linalg.solve (v2.9.1) requires casting float16 to float32.
Note 4: reset lr_params, lr_preconditioner, grad_clip_max_norm, preconditioner_update_probability, and
exact_hessian_vector_product with `assign' explicitly, NOT `=', since they are variables after init.
"""
def __init__(self, params_with_grad, rank_of_modification:int=10, preconditioner_init_scale=1.0,
lr_params=0.01, lr_preconditioner=0.01,
grad_clip_max_norm=None, preconditioner_update_probability=1.0,
exact_hessian_vector_product:bool=True):
# flatten param list and double check trainable flag
params_with_grad = [params_with_grad,] if tf.is_tensor(params_with_grad) else params_with_grad
params_with_grad = tf.nest.flatten(params_with_grad)
self._params_with_grad = [param for param in params_with_grad if param.trainable]
self._dtype = self._params_with_grad[0].dtype
# mutable members
self.lr_params = tf.Variable(lr_params, dtype=self._dtype, trainable=False)
self.lr_preconditioner = tf.Variable(lr_preconditioner, dtype=self._dtype, trainable=False)
if grad_clip_max_norm is None:
self.grad_clip_max_norm = tf.Variable(tf.constant(1, dtype=self._dtype)/0, trainable=False) # set to inf
else:
self.grad_clip_max_norm = tf.Variable(grad_clip_max_norm, dtype=self._dtype, trainable=False)
self.preconditioner_update_probability = tf.Variable(preconditioner_update_probability, dtype=self._dtype, trainable=False)
self.exact_hessian_vector_product = tf.Variable(exact_hessian_vector_product, dtype=bool, trainable=False)
# protected members
self._tiny = (lambda x=tf.constant(1, dtype=self._dtype), f=lambda x, f: f(x/2, f) if x/2>0 else x: f(x, f))()
self._delta_param_scale = ((lambda x=tf.constant(1, dtype=self._dtype), f=lambda x, f: f(x/2, f) if 1+x/2>1 else x: f(x, f))())**0.5
self._param_sizes = [tf.size(param).numpy() for param in self._params_with_grad]
self._param_cumsizes = tf.cumsum(self._param_sizes).numpy()
num_params = self._param_cumsizes[-1]
uv_scale = tf.cast((1/(num_params*rank_of_modification))**0.5, self._dtype)
self._U = tf.Variable(tf.random.normal([num_params, rank_of_modification], dtype=self._dtype)*uv_scale, trainable=False)
self._V = tf.Variable(tf.random.normal([num_params, rank_of_modification], dtype=self._dtype)*uv_scale, trainable=False)
self._d = tf.Variable(tf.ones( [num_params, 1], dtype=self._dtype)*preconditioner_init_scale, trainable=False)
def step(self, closure):
"""
Performs a single step of PSGD with low-rank modification (UVd) preconditioner, i.e.,
updating the trainable parameters once, and returning what closure returns.
Args:
closure (callable): a closure that evaluates the function of self._params_with_grad,
and returns the loss, or an iterable with the first one being loss.
Random numbers, if any, used inside the closure should be generated starting
from the same seed if self.exact_hessian_vector_product = False; otherwise doesn't matter.
"""
if tf.random.uniform([], dtype=self._dtype) < self.preconditioner_update_probability:
update_Q = tf.constant(True, dtype=bool)
# evaluates gradients, Hessian-vector product, and updates the preconditioner
if self.exact_hessian_vector_product:
# exact Hessian-vector product
with tf.GradientTape() as g2nd:
with tf.GradientTape() as g1st:
closure_returns = closure()
loss = closure_returns if tf.is_tensor(closure_returns) else closure_returns[0]
grads = g1st.gradient(loss, self._params_with_grad)
vs = [tf.random.normal(param.shape, dtype=self._dtype) for param in self._params_with_grad]
Hvs = g2nd.gradient(grads, self._params_with_grad, vs)
else:
# approximate Hessian-vector product via finite-difference formulae. Use it with cautions.
with tf.GradientTape() as g1st:
closure_returns = closure()
loss = closure_returns if tf.is_tensor(closure_returns) else closure_returns[0]
grads = g1st.gradient(loss, self._params_with_grad)
vs = [tf.random.normal(param.shape, stddev=self._delta_param_scale, dtype=self._dtype) for param in self._params_with_grad]
[param.assign_add(v) for (param, v) in zip(self._params_with_grad, vs)]
with tf.GradientTape() as g1st:
perturbed_returns = closure()
perturbed_loss = perturbed_returns if tf.is_tensor(perturbed_returns) else perturbed_returns[0]
perturbed_grads = g1st.gradient(perturbed_loss, self._params_with_grad)
Hvs = [perturbed_g - g for (perturbed_g, g) in zip(perturbed_grads, grads)]
# update preconditioner
v = tf.concat([tf.reshape(v, [-1]) for v in vs], 0)
h = tf.concat([tf.reshape(h, [-1]) for h in Hvs], 0)
if self.exact_hessian_vector_product:
update_precond_UVd_math_(self._U, self._V, self._d,
v[:,None], h[:,None], step=self.lr_preconditioner, tiny=self._tiny)
else: # compensate the levels of v and h; helpful to reduce numerical errors in half-precision training
update_precond_UVd_math_(self._U, self._V, self._d,
v[:,None]/self._delta_param_scale, h[:,None]/self._delta_param_scale, step=self.lr_preconditioner, tiny=self._tiny)
else:
update_Q = tf.constant(False, dtype=bool)
# only evaluates the gradients
with tf.GradientTape() as g1st:
closure_returns = closure()
loss = closure_returns if tf.is_tensor(closure_returns) else closure_returns[0]
grads = g1st.gradient(loss, self._params_with_grad)
vs = [tf.zeros([0], dtype=self._dtype) for param in self._params_with_grad]
# preconditioned gradients
grad = tf.concat([tf.reshape(g, [-1]) for g in grads], 0)
pre_grad = precond_grad_UVd_math(self._U, self._V, self._d, grad[:, None])
# gradient clipping is optional
if tf.math.is_inf(self.grad_clip_max_norm):
lr = self.lr_params
else:
grad_norm = tf.sqrt(tf.reduce_sum(pre_grad*pre_grad)) + self._tiny
lr = self.lr_params * tf.minimum(self.grad_clip_max_norm/grad_norm, 1.0)
# update the parameters
if self.exact_hessian_vector_product or (not update_Q):
[param.assign_sub(lr * tf.reshape(pre_grad[j - i:j], param.shape))
for (param, i, j) in zip(self._params_with_grad, self._param_sizes, self._param_cumsizes)]
else: # in this case, do not forget to remove the perturbation on parameters
[param.assign_sub(lr * tf.reshape(pre_grad[j - i:j], param.shape) + v)
for (param, i, j, v) in zip(self._params_with_grad, self._param_sizes, self._param_cumsizes, vs)]
# return whatever closure returns
return closure_returns
################## end of UVd preconditioner #################################