-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathmain.py
546 lines (471 loc) · 27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import argparse
import os
import torch
import logging
import random
import numpy as np
from glue_utils import convert_examples_to_seq_features, output_modes, processors, compute_metrics_absa
from tqdm import tqdm, trange
from transformers import BertConfig, BertTokenizer, XLNetConfig, XLNetTokenizer, WEIGHTS_NAME
from transformers import AdamW, get_linear_schedule_with_warmup
from absa_layer import BertABSATagger, XLNetABSATagger
from torch.utils.data import DataLoader, TensorDataset, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
from tensorboardX import SummaryWriter
import glob
import json
logger = logging.getLogger(__name__)
#ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig)), ())
ALL_MODELS = (
'bert-base-uncased',
'bert-large-uncased',
'bert-base-cased',
'bert-large-cased',
'bert-base-multilingual-uncased',
'bert-base-multilingual-cased',
'bert-base-chinese',
'bert-base-german-cased',
'bert-large-uncased-whole-word-masking',
'bert-large-cased-whole-word-masking',
'bert-large-uncased-whole-word-masking-finetuned-squad',
'bert-large-cased-whole-word-masking-finetuned-squad',
'bert-base-cased-finetuned-mrpc',
'bert-base-german-dbmdz-cased',
'bert-base-german-dbmdz-uncased',
'xlnet-base-cased',
'xlnet-large-cased'
)
MODEL_CLASSES = {
'bert': (BertConfig, BertABSATagger, BertTokenizer),
'xlnet': (XLNetConfig, XLNetABSATagger, XLNetTokenizer)
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def init_args():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--absa_type", default=None, type=str, required=True,
help="Downstream absa layer type selected in the list: [linear, gru, san, tfm, crf]")
parser.add_argument("--tfm_mode", default=None, type=str, required=True,
help="mode of the pre-trained transformer, selected from: [finetune]")
parser.add_argument("--fix_tfm", default=None, type=int, required=True,
help="whether fix the transformer params or not")
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(
ALL_MODELS))
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
## Other parameters
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Rul evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=100,
help="Save checkpoint every X updates steps.")
parser.add_argument("--eval_all_checkpoints", action='store_true',
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--overwrite_cache', action='store_true',
help="Overwrite the cached training and evaluation sets")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--tagging_schema', type=str, default='BIEOS')
parser.add_argument("--overfit", type=int, default=0, help="if evaluate overfit or not")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
parser.add_argument('--MASTER_ADDR', type=str)
parser.add_argument('--MASTER_PORT', type=str)
args = parser.parse_args()
output_dir = '%s-%s-%s-%s' % (args.model_type, args.absa_type, args.task_name, args.tfm_mode)
if args.fix_tfm:
output_dir = '%s-fix' % output_dir
if args.overfit:
output_dir = '%s-overfit' % output_dir
args.max_steps = 3000
args.output_dir = output_dir
return args
def train(args, train_dataset, model, tokenizer):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
# draw training samples from shuffled dataset
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
# set the seed number
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
model.train()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
'labels': batch[3]}
ouputs = model(**inputs)
# loss with attention mask
loss = ouputs[0] # model outputs are always tuple in pytorch-transformers (see doc)
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well
results = evaluate(args, model, tokenizer)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
# Save model checkpoint per each N steps
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, mode, prefix=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = (args.task_name,)
eval_outputs_dirs = (args.output_dir,)
results = {}
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset, eval_evaluate_label_ids = load_and_cache_examples(args, eval_task, tokenizer, mode=mode)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
#logger.info("***** Running evaluation on %s.txt *****" % mode)
eval_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
crf_logits, crf_mask = [], []
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM don't use segment_ids
'labels': batch[3]}
outputs = model(**inputs)
# logits: (bsz, seq_len, label_size)
# here the loss is the masked loss
tmp_eval_loss, logits = outputs[:2]
eval_loss += tmp_eval_loss.mean().item()
crf_logits.append(logits)
crf_mask.append(batch[1])
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
# argmax operation over the last dimension
if model.tagger_config.absa_type != 'crf':
# greedy decoding
preds = np.argmax(preds, axis=-1)
else:
# viterbi decoding for CRF-based model
crf_logits = torch.cat(crf_logits, dim=0)
crf_mask = torch.cat(crf_mask, dim=0)
preds = model.tagger.viterbi_tags(logits=crf_logits, mask=crf_mask)
result = compute_metrics_absa(preds, out_label_ids, eval_evaluate_label_ids, args.tagging_schema)
result['eval_loss'] = eval_loss
results.update(result)
output_eval_file = os.path.join(eval_output_dir, "%s_results.txt" % mode)
with open(output_eval_file, "w") as writer:
#logger.info("***** %s results *****" % mode)
for key in sorted(result.keys()):
if 'eval_loss' in key:
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
#logger.info("***** %s results *****" % mode)
return results
def load_and_cache_examples(args, task, tokenizer, mode='train'):
processor = processors[task]()
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
mode,
list(filter(None, args.model_name_or_path.split('/'))).pop(),
str(args.max_seq_length),
str(task)))
if os.path.exists(cached_features_file):
print("cached_features_file:", cached_features_file)
features = torch.load(cached_features_file)
else:
#logger.info("Creating features from dataset file at %s", args.data_dir)
label_list = processor.get_labels(args.tagging_schema)
if mode == 'train':
examples = processor.get_train_examples(args.data_dir, args.tagging_schema)
elif mode == 'dev':
examples = processor.get_dev_examples(args.data_dir, args.tagging_schema)
elif mode == 'test':
examples = processor.get_test_examples(args.data_dir, args.tagging_schema)
else:
raise Exception("Invalid data mode %s..." % mode)
features = convert_examples_to_seq_features(examples=examples, label_list=label_list, tokenizer=tokenizer,
cls_token_at_end=bool(args.model_type in ['xlnet']),
cls_token=tokenizer.cls_token,
sep_token=tokenizer.sep_token,
cls_token_segment_id=2 if args.model_type in ['xlnet'] else 0,
pad_on_left=bool(args.model_type in ['xlnet']),
pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0)
if args.local_rank in [-1, 0]:
#logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
# used in evaluation
all_evaluate_label_ids = [f.evaluate_label_ids for f in features]
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return dataset, all_evaluate_label_ids
def main():
args = init_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
os.environ['MASTER_ADDR'] = args.MASTER_ADDR
os.environ['MASTER_PORT'] = args.MASTER_PORT
torch.distributed.init_process_group(backend='nccl', rank=args.local_rank, world_size=1)
args.n_gpu = 1
args.device = device
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
# not using 16-bits training
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: False",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1))
# Set seed
set_seed(args)
# Prepare task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % args.task_name)
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels(args.tagging_schema)
num_labels = len(label_list)
if args.local_rank not in [-1, 0]:
torch.distributed.barrier()
# initialize the pre-trained model
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels, finetuning_task=args.task_name, cache_dir="./cache")
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case, cache_dir='./cache')
config.absa_type = args.absa_type
config.tfm_mode = args.tfm_mode
config.fix_tfm = args.fix_tfm
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path),
config=config, cache_dir='./cache')
# Distributed and parallel training
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Training
if args.do_train:
train_dataset, train_evaluate_label_ids = load_and_cache_examples(args, args.task_name, tokenizer, mode='train')
global_step, tr_loss = train(args, train_dataset, model, tokenizer)
if args.do_train and (args.local_rank == -1 or dist.get_rank() == 0):
# Create output directory if needed
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.mkdir(args.output_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(args.output_dir)
tokenizer.save_pretrained(args.output_dir)
# Good practice: save your training arguments together with the trained model
# save the model configuration
torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
# Load a trained model and vocabulary that you have fine-tuned
model = model_class.from_pretrained(args.output_dir)
tokenizer = tokenizer_class.from_pretrained(args.output_dir)
model.to(args.device)
# Validation
results = {}
best_f1 = -999999.0
best_checkpoint = None
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Perform validation on the following checkpoints: %s", checkpoints)
test_results = {}
for checkpoint in checkpoints:
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
if global_step == 'finetune' or global_step == 'train' or global_step == 'fix' or global_step == 'overfit':
continue
# validation set
model = model_class.from_pretrained(checkpoint)
model.to(args.device)
dev_result = evaluate(args, model, tokenizer, mode='dev', prefix=global_step)
# regard the micro-f1 as the criteria of model selection
if int(global_step) > 1000 and dev_result['micro-f1'] > best_f1:
best_f1 = dev_result['micro-f1']
best_checkpoint = checkpoint
dev_result = dict((k + '_{}'.format(global_step), v) for k, v in dev_result.items())
results.update(dev_result)
test_result = evaluate(args, model, tokenizer, mode='test', prefix=global_step)
test_result = dict((k + '_{}'.format(global_step), v) for k, v in test_result.items())
test_results.update(test_result)
best_ckpt_string = "\nThe best checkpoint is %s" % best_checkpoint
logger.info(best_ckpt_string)
dev_f1_values, dev_loss_values = [], []
for k in results:
v = results[k]
if 'micro-f1' in k:
dev_f1_values.append((k, v))
if 'eval_loss' in k:
dev_loss_values.append((k, v))
test_f1_values, test_loss_values = [], []
for k in test_results:
v = test_results[k]
if 'micro-f1' in k:
test_f1_values.append((k, v))
if 'eval_loss' in k:
test_loss_values.append((k, v))
log_file_path = '%s/log.txt' % args.output_dir
log_file = open(log_file_path, 'a')
log_file.write("\tValidation:\n")
for (test_f1_k, test_f1_v), (test_loss_k, test_loss_v), (dev_f1_k, dev_f1_v), (dev_loss_k, dev_loss_v) in zip(
test_f1_values, test_loss_values, dev_f1_values, dev_loss_values):
global_step = int(test_f1_k.split('_')[-1])
if not args.overfit and global_step <= 1000:
continue
print('test-%s: %.5lf, test-%s: %.5lf, dev-%s: %.5lf, dev-%s: %.5lf' % (test_f1_k,
test_f1_v, test_loss_k, test_loss_v,
dev_f1_k, dev_f1_v, dev_loss_k,
dev_loss_v))
validation_string = '\t\tdev-%s: %.5lf, dev-%s: %.5lf' % (dev_f1_k, dev_f1_v, dev_loss_k, dev_loss_v)
log_file.write(validation_string+'\n')
n_times = args.max_steps // args.save_steps + 1
for i in range(1, n_times):
step = i * 100
log_file.write('\tStep %s:\n' % step)
precision = test_results['precision_%s' % step]
recall = test_results['recall_%s' % step]
micro_f1 = test_results['micro-f1_%s' % step]
macro_f1 = test_results['macro-f1_%s' % step]
log_file.write('\t\tprecision: %.4lf, recall: %.4lf, micro-f1: %.4lf, macro-f1: %.4lf\n'
% (precision, recall, micro_f1, macro_f1))
log_file.write("\tBest checkpoint: %s\n" % best_checkpoint)
log_file.write('******************************************\n')
log_file.close()
if __name__ == '__main__':
main()