forked from ikostrikov/pytorch-a2c-ppo-acktr-gail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
executable file
·198 lines (157 loc) · 6.91 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import copy
import glob
import os
import time
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from arguments import get_args
from baselines.common.vec_env.dummy_vec_env import DummyVecEnv
from baselines.common.vec_env.subproc_vec_env import SubprocVecEnv
from baselines.common.vec_env.vec_normalize import VecNormalize
from envs import make_env
from model import Policy
from storage import RolloutStorage
from visualize import visdom_plot
import algo
args = get_args()
assert args.algo in ['a2c', 'ppo', 'acktr']
if args.recurrent_policy:
assert args.algo in ['a2c', 'ppo'], \
'Recurrent policy is not implemented for ACKTR'
num_updates = int(args.num_frames) // args.num_steps // args.num_processes
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
try:
os.makedirs(args.log_dir)
except OSError:
files = glob.glob(os.path.join(args.log_dir, '*.monitor.csv'))
for f in files:
os.remove(f)
def main():
print("#######")
print("WARNING: All rewards are clipped or normalized so you need to use a monitor (see envs.py) or visdom plot to get true rewards")
print("#######")
torch.set_num_threads(1)
if args.vis:
from visdom import Visdom
viz = Visdom(port=args.port)
win = None
envs = [make_env(args.env_name, args.seed, i, args.log_dir, args.add_timestep)
for i in range(args.num_processes)]
if args.num_processes > 1:
envs = SubprocVecEnv(envs)
else:
envs = DummyVecEnv(envs)
if len(envs.observation_space.shape) == 1:
envs = VecNormalize(envs)
obs_shape = envs.observation_space.shape
obs_shape = (obs_shape[0] * args.num_stack, *obs_shape[1:])
actor_critic = Policy(obs_shape, envs.action_space, args.recurrent_policy)
if envs.action_space.__class__.__name__ == "Discrete":
action_shape = 1
else:
action_shape = envs.action_space.shape[0]
if args.cuda:
actor_critic.cuda()
if args.algo == 'a2c':
agent = algo.A2C_ACKTR(actor_critic, args.value_loss_coef,
args.entropy_coef, lr=args.lr,
eps=args.eps, alpha=args.alpha,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'ppo':
agent = algo.PPO(actor_critic, args.clip_param, args.ppo_epoch, args.num_mini_batch,
args.value_loss_coef, args.entropy_coef, lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'acktr':
agent = algo.A2C_ACKTR(actor_critic, args.value_loss_coef,
args.entropy_coef, acktr=True)
rollouts = RolloutStorage(args.num_steps, args.num_processes, obs_shape, envs.action_space, actor_critic.state_size)
current_obs = torch.zeros(args.num_processes, *obs_shape)
def update_current_obs(obs):
shape_dim0 = envs.observation_space.shape[0]
obs = torch.from_numpy(obs).float()
if args.num_stack > 1:
current_obs[:, :-shape_dim0] = current_obs[:, shape_dim0:]
current_obs[:, -shape_dim0:] = obs
obs = envs.reset()
update_current_obs(obs)
rollouts.observations[0].copy_(current_obs)
# These variables are used to compute average rewards for all processes.
episode_rewards = torch.zeros([args.num_processes, 1])
final_rewards = torch.zeros([args.num_processes, 1])
if args.cuda:
current_obs = current_obs.cuda()
rollouts.cuda()
start = time.time()
for j in range(num_updates):
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
value, action, action_log_prob, states = actor_critic.act(
rollouts.observations[step],
rollouts.states[step],
rollouts.masks[step])
cpu_actions = action.squeeze(1).cpu().numpy()
# Obser reward and next obs
obs, reward, done, info = envs.step(cpu_actions)
reward = torch.from_numpy(np.expand_dims(np.stack(reward), 1)).float()
episode_rewards += reward
# If done then clean the history of observations.
masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done])
final_rewards *= masks
final_rewards += (1 - masks) * episode_rewards
episode_rewards *= masks
if args.cuda:
masks = masks.cuda()
if current_obs.dim() == 4:
current_obs *= masks.unsqueeze(2).unsqueeze(2)
else:
current_obs *= masks
update_current_obs(obs)
rollouts.insert(current_obs, states, action, action_log_prob, value, reward, masks)
with torch.no_grad():
next_value = actor_critic.get_value(rollouts.observations[-1],
rollouts.states[-1],
rollouts.masks[-1]).detach()
rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
if j % args.save_interval == 0 and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
# A really ugly way to save a model to CPU
save_model = actor_critic
if args.cuda:
save_model = copy.deepcopy(actor_critic).cpu()
save_model = [save_model,
hasattr(envs, 'ob_rms') and envs.ob_rms or None]
torch.save(save_model, os.path.join(save_path, args.env_name + ".pt"))
if j % args.log_interval == 0:
end = time.time()
total_num_steps = (j + 1) * args.num_processes * args.num_steps
print("Updates {}, num timesteps {}, FPS {}, mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}, entropy {:.5f}, value loss {:.5f}, policy loss {:.5f}".
format(j, total_num_steps,
int(total_num_steps / (end - start)),
final_rewards.mean(),
final_rewards.median(),
final_rewards.min(),
final_rewards.max(), dist_entropy,
value_loss, action_loss))
if args.vis and j % args.vis_interval == 0:
try:
# Sometimes monitor doesn't properly flush the outputs
win = visdom_plot(viz, win, args.log_dir, args.env_name,
args.algo, args.num_frames)
except IOError:
pass
if __name__ == "__main__":
main()