-
Notifications
You must be signed in to change notification settings - Fork 1
/
mobilenetv1_05.py
284 lines (230 loc) · 12.1 KB
/
mobilenetv1_05.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# -*- coding: utf-8 -*-
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import warnings
from keras.models import Model
from keras import layers
from keras.layers import Flatten, Dense, Input, Conv2D, MaxPooling2D, Dropout, BatchNormalization, Add, ReLU
from keras.layers import GlobalAveragePooling2D, GlobalMaxPooling2D, TimeDistributed
from keras.engine.topology import get_source_inputs
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras import backend as K
from keras_frcnn.RoiPoolingConv import RoiPoolingConv
from keras_frcnn.FixedBatchNormalization import FixedBatchNormalization
def get_weight_path():
if K.image_dim_ordering() == 'th':
print('pretrained weights not available for VGG with theano backend')
return
else:
return './pretrain/mobilenet_5_0_224_tf.h5'
def get_img_output_length(width, height):
def get_output_length(input_length):
return input_length//16 # there is 4 strides.
return get_output_length(width), get_output_length(height)
def nn_base(input_tensor=None, trainable=False):
# Determine proper input shape
if K.image_dim_ordering() == 'th':
input_shape = (3, None, None)
else:
input_shape = (None, None, 3)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
if K.image_dim_ordering() == 'tf':
bn_axis = 3
else:
bn_axis = 1
# for testing..
alpha = 0.5
depth_multiplier = 1
# need this layer to pass the input image size
x = layers.ZeroPadding2D((3, 3))(img_input)
x = _conv_block(img_input, 32, alpha, strides=(2, 2))
x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier,
strides=(2, 2), block_id=2)
x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier,
strides=(2, 2), block_id=4)
x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier,
strides=(2, 2), block_id=6)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)
return x
def rpn(base_layers, num_anchors):
x = Conv2D(256, (3, 3), padding='same', activation='relu', kernel_initializer='normal', name='rpn_conv1')(base_layers)
x_class = Conv2D(num_anchors, (1, 1), activation='sigmoid', kernel_initializer='uniform', name='rpn_out_class')(x)
x_regr = Conv2D(num_anchors * 4, (1, 1), activation='linear', kernel_initializer='zero', name='rpn_out_regress')(x)
return [x_class, x_regr, base_layers]
def classifier(base_layers, input_rois, num_rois, nb_classes = 21, trainable=False):
# compile times on theano tend to be very high, so we use smaller ROI pooling regions to workaround
if K.backend() == 'tensorflow':
pooling_regions = 7
input_shape = (num_rois,7,7,256)
elif K.backend() == 'theano':
pooling_regions = 7
input_shape = (num_rois,512,7,7)
out_roi_pool = RoiPoolingConv(pooling_regions, num_rois)([base_layers, input_rois])
# final blocks
alpha = 0.5
out = classifier_layers(out_roi_pool, input_shape=input_shape, trainable=True)
out = TimeDistributed(Flatten())(out)
# outputs
out_class = TimeDistributed(Dense(nb_classes, activation='softmax', kernel_initializer='zero'), name='dense_class_{}'.format(nb_classes))(out)
# note: no regression target for bg class
out_regr = TimeDistributed(Dense(4 * (nb_classes-1), activation='linear', kernel_initializer='zero'), name='dense_regress_{}'.format(nb_classes))(out)
return [out_class, out_regr]
def classifier_layers(x, input_shape, trainable=False):
# seem to require timedistributed layers.. whats that???
# it may be for 5-dim inputs.
alpha = 0.5
x = _conv_block_td(inputs=x, filters=256, input_shape=input_shape, strides=(1, 1), trainable=trainable)
x = _depthwise_conv_block_td(x, 512, alpha, depth_multiplier=1, block_id=12)
x = _depthwise_conv_block_td(x, 1024, alpha, depth_multiplier=1, block_id=13)
x = _depthwise_conv_block_td(x, 1024, alpha, depth_multiplier=1, block_id=14)
# x = identity_block_td(x, 3, [512, 512, 2048], stage=5, block='c', trainable=trainable)
x = TimeDistributed(layers.AveragePooling2D((7, 7)), name='avg_pool')(x)
return x
def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):
channel_axis = 3 #if backend.image_data_format() == 'channels_first' else -1
filters = int(filters * alpha)
x = layers.ZeroPadding2D(padding=((0, 1), (0, 1)), name='conv1_pad')(inputs)
x = layers.Conv2D(filters, kernel,
padding='valid',
use_bias=False,
strides=strides,
name='conv1')(x)
x = layers.BatchNormalization(axis=channel_axis, name='conv1_bn')(x)
return layers.ReLU(6., name='conv1_relu')(x)
def _conv_block_td(inputs, filters, input_shape, kernel=(3, 3), strides=(1, 1), trainable=True):
channel_axis = 3 #if backend.image_data_format() == 'channels_first' else -1
x = TimeDistributed(layers.Conv2D(filters, kernel, padding='same', use_bias=False, strides=strides, input_shape=input_shape), name='conv1_td')(inputs)
x = TimeDistributed(layers.BatchNormalization(axis=channel_axis), name='conv1_bn_td')(x)
return layers.ReLU(6., name='conv1_relu_td')(x)
def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha,
depth_multiplier=1, strides=(1, 1), block_id=1):
"""Adds a depthwise convolution block.
A depthwise convolution block consists of a depthwise conv,
batch normalization, relu6, pointwise convolution,
batch normalization and relu6 activation.
# Arguments
inputs: Input tensor of shape `(rows, cols, channels)`
(with `channels_last` data format) or
(channels, rows, cols) (with `channels_first` data format).
pointwise_conv_filters: Integer, the dimensionality of the output space
(i.e. the number of output filters in the pointwise convolution).
alpha: controls the width of the network.
- If `alpha` < 1.0, proportionally decreases the number
of filters in each layer.
- If `alpha` > 1.0, proportionally increases the number
of filters in each layer.
- If `alpha` = 1, default number of filters from the paper
are used at each layer.
depth_multiplier: The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to `filters_in * depth_multiplier`.
strides: An integer or tuple/list of 2 integers,
specifying the strides of the convolution
along the width and height.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any `dilation_rate` value != 1.
block_id: Integer, a unique identification designating
the block number.
# Input shape
4D tensor with shape:
`(batch, channels, rows, cols)` if data_format='channels_first'
or 4D tensor with shape:
`(batch, rows, cols, channels)` if data_format='channels_last'.
# Output shape
4D tensor with shape:
`(batch, filters, new_rows, new_cols)`
if data_format='channels_first'
or 4D tensor with shape:
`(batch, new_rows, new_cols, filters)`
if data_format='channels_last'.
`rows` and `cols` values might have changed due to stride.
# Returns
Output tensor of block.
"""
channel_axis = 3
pointwise_conv_filters = int(pointwise_conv_filters * alpha)
if strides == (1, 1):
x = inputs
else:
x = layers.ZeroPadding2D(((0, 1), (0, 1)),
name='conv_pad_%d' % block_id)(inputs)
x = layers.DepthwiseConv2D((3, 3),
padding='same' if strides == (1, 1) else 'valid',
depth_multiplier=depth_multiplier,
strides=strides,
use_bias=False,
name='conv_dw_%d' % block_id)(x)
x = layers.BatchNormalization(
axis=channel_axis, name='conv_dw_%d_bn' % block_id)(x)
x = layers.ReLU(6., name='conv_dw_%d_relu' % block_id)(x)
x = layers.Conv2D(pointwise_conv_filters, (1, 1),
padding='same',
use_bias=False,
strides=(1, 1),
name='conv_pw_%d' % block_id)(x)
x = layers.BatchNormalization(axis=channel_axis,
name='conv_pw_%d_bn' % block_id)(x)
return layers.ReLU(6., name='conv_pw_%d_relu' % block_id)(x)
def _depthwise_conv_block_td(inputs, pointwise_conv_filters, alpha, depth_multiplier=1, strides=(1, 1), block_id=1):
channel_axis = 3
pointwise_conv_filters = int(pointwise_conv_filters * alpha)
if strides == (1, 1):
x = inputs
else:
x = layers.ZeroPadding2D(((0, 1), (0, 1)),
name='conv_pad_%d' % block_id)(inputs)
x = TimeDistributed(layers.DepthwiseConv2D((3, 3),
padding='same' if strides == (1, 1) else 'valid',
depth_multiplier=depth_multiplier,
strides=strides,
use_bias=False
),name='conv_dw_td_%d' % block_id)(x)
x = TimeDistributed(layers.BatchNormalization(
axis=channel_axis), name='conv_dw_td_%d_bn' % block_id)(x)
x = layers.ReLU(6., name='conv_dw_td_%d_relu' % block_id)(x)
x = TimeDistributed(layers.Conv2D(pointwise_conv_filters, (1, 1),
padding='same',
use_bias=False,
strides=(1, 1)),
name='conv_pw_td_%d' % block_id)(x)
x = TimeDistributed(layers.BatchNormalization(axis=channel_axis),
name='conv_pw_rd_%d_bn' % block_id)(x)
return layers.ReLU(6., name='conv_pw_td_%d_relu' % block_id)(x)
def identity_block_td(input_tensor, kernel_size, filters, stage, block, trainable=True):
# identity block time distributed
nb_filter1, nb_filter2, nb_filter3 = filters
if K.image_dim_ordering() == 'tf':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = TimeDistributed(layers.Convolution2D(nb_filter1, (1, 1), trainable=trainable, kernel_initializer='normal'), name=conv_name_base + '2a')(input_tensor)
x = TimeDistributed(FixedBatchNormalization(axis=bn_axis), name=bn_name_base + '2a')(x)
x = layers.Activation('relu')(x)
x = TimeDistributed(layers.Convolution2D(nb_filter2, (kernel_size, kernel_size), trainable=trainable, kernel_initializer='normal',padding='same'), name=conv_name_base + '2b')(x)
x = TimeDistributed(FixedBatchNormalization(axis=bn_axis), name=bn_name_base + '2b')(x)
x = layers.Activation('relu')(x)
x = TimeDistributed(layers.Convolution2D(nb_filter3, (1, 1), trainable=trainable, kernel_initializer='normal'), name=conv_name_base + '2c')(x)
x = TimeDistributed(FixedBatchNormalization(axis=bn_axis), name=bn_name_base + '2c')(x)
x = Add()([x, input_tensor])
x = layers.Activation('relu')(x)
return x