Connecting metal-organic cages axial position #387
-
First of all, thank you for the excellent tutorials and stk code. I'm a beginner at that, interested in material science mainly in extended frameworks. Thank you in advance. |
Beta Was this translation helpful? Give feedback.
Replies: 10 comments
-
Hey @Jaloca2 - Welcome and thank you! This is an interesting structure problem! I have previously written code that performs a similar construction, where a MOC is reacted at functional groups on its ligand backbone. I modified that code to do the reaction at the axial position (clearly, I have used a weird set of building blocks, but you can figure out how to replace them with what you want; let me know how it goes for you!). Note that the way I have done this was to actually modify the Paddlewheel topology to have an axial position. i hope the code makes sense! I will suggest that the selection of COF topology may be a problem here, so let us know what you are trying to build and we can try to help! @lukasturcani - what do you think of this solution?? import numpy as np
import stk
import stko
class AxialPaddlewheel(stk.metal_complex.MetalComplex):
"""
Represents a metal complex topology graph.
Two distinct metal building blocks, one with five functional
groups, one with four.
Binding ligand building blocks with two functional groups are
required for this topology graph and axial ligand building
blocks with one functional group are required.
When using a :class:`dict` for initialization, a
:class:`.BuildingBlock` needs to be assigned to each of the
following numbers:
| axial_metal: (0, )
| other_metal: (1, )
| ligands: (0, 1, 2, 3)
| axial_ligand: (4, )
See :class:`.MetalComplex` for more details and examples.
"""
_metal_vertex_prototypes = (
stk.metal_complex.vertices.MetalVertex(0, [0, 1, 0]),
stk.metal_complex.vertices.MetalVertex(1, [0, -1, 0]),
)
_ligand_vertex_prototypes = (
stk.metal_complex.vertices.BiDentateLigandVertex(2, [2, 0, 0]),
stk.metal_complex.vertices.BiDentateLigandVertex(3, [0, 0, 2]),
stk.metal_complex.vertices.BiDentateLigandVertex(4, [-2, 0, 0]),
stk.metal_complex.vertices.BiDentateLigandVertex(5, [0, 0, -2]),
stk.metal_complex.vertices.MonoDentateLigandVertex(6, [0, 2, 0]),
)
_edge_prototypes = (
stk.Edge(
id=0,
vertex1=_metal_vertex_prototypes[0],
vertex2=_ligand_vertex_prototypes[0],
position=[0.1, 0.5, 0],
),
stk.Edge(
id=1,
vertex1=_metal_vertex_prototypes[1],
vertex2=_ligand_vertex_prototypes[0],
position=[0.1, -0.5, 0],
),
stk.Edge(
id=2,
vertex1=_metal_vertex_prototypes[0],
vertex2=_ligand_vertex_prototypes[1],
position=[0, 0.5, 0.1],
),
stk.Edge(
id=3,
vertex1=_metal_vertex_prototypes[1],
vertex2=_ligand_vertex_prototypes[1],
position=[0, -0.5, 0.1],
),
stk.Edge(
id=4,
vertex1=_metal_vertex_prototypes[0],
vertex2=_ligand_vertex_prototypes[2],
position=[-0.1, 0.5, 0],
),
stk.Edge(
id=5,
vertex1=_metal_vertex_prototypes[1],
vertex2=_ligand_vertex_prototypes[2],
position=[-0.1, -0.5, 0],
),
stk.Edge(
id=6,
vertex1=_metal_vertex_prototypes[0],
vertex2=_ligand_vertex_prototypes[3],
position=[0, 0.5, -0.1],
),
stk.Edge(
id=7,
vertex1=_metal_vertex_prototypes[1],
vertex2=_ligand_vertex_prototypes[3],
position=[0, -0.5, -0.1],
),
stk.Edge(
id=8,
vertex1=_metal_vertex_prototypes[0],
vertex2=_ligand_vertex_prototypes[4],
position=[0, 1.5, 0],
),
)
def main():
rdkit_opt = stko.MetalOptimizer(
metal_binder_distance=1.9,
metal_binder_forceconstant=1.0e2,
max_iterations=200,
)
fgs = [
stk.SmartsFunctionalGroupFactory(
smarts='[#6]~[#8]~[#1]',
bonders=(1, ),
deleters=(2, ),
),
stk.SmartsFunctionalGroupFactory(
smarts='[#6]~[#8X1]',
bonders=(1, ),
deleters=(),
),
]
ligand_bb = stk.BuildingBlock.init_from_file('org_carb.mol', fgs)
axial_bb = stk.BuildingBlock(
smiles='C(N)O',
functional_groups=(stk.AlcoholFactory(), ),
)
axial_bb.write('axial_bb.mol')
print(ligand_bb, axial_bb)
copper_atom = stk.BuildingBlock(
smiles='[Cu+2]',
functional_groups=(
stk.SingleAtom(stk.Cu(0, charge=2))
for i in range(5)
),
position_matrix=np.array([[0, 0, 0]]),
)
# Use a custom Paddlewheel topology that has axial positions.
copper_pw = stk.ConstructedMolecule(
AxialPaddlewheel(
metals={copper_atom: (0, 1)},
ligands={
ligand_bb: (0, 1, 2, 3),
axial_bb: (4, ),
},
optimizer=stk.MCHammer(),
)
)
copper_pw.write('copper_pw.mol')
copper_pw = rdkit_opt.optimize(copper_pw)
copper_pw.write('copper_pw_opt.mol')
copper_pw = stk.BuildingBlock.init_from_molecule(
copper_pw, (stk.BromoFactory(), )
)
ligand_bb = stk.BuildingBlock.init_from_file(
'org.mol', (stk.BromoFactory(), )
)
print(copper_pw, ligand_bb)
cage = stk.ConstructedMolecule(
topology_graph=stk.cage.M2L4Lantern(
building_blocks=(
copper_pw,
ligand_bb,
),
optimizer=stk.MCHammer(num_steps=2000),
)
)
cage.write('cage.mol')
cage = rdkit_opt.optimize(cage)
cage.write('cage_opt.mol')
cage_bb = stk.BuildingBlock.init_from_molecule(
molecule=cage,
functional_groups=(stk.PrimaryAminoFactory(), ),
)
linker_bb = stk.BuildingBlock(
smiles='C1(C(C(C1N)N)N)N',
functional_groups=(stk.PrimaryAminoFactory(), ),
)
print(cage_bb, linker_bb)
cof = stk.ConstructedMolecule(
topology_graph=stk.cof.Square(
building_blocks=(cage_bb, linker_bb),
lattice_size=(2, 2, 1),
# Setting scale_steps to False tends to lead to a
# better structure.
optimizer=stk.Collapser(scale_steps=False),
),
)
cof.write('cof.mol')
if __name__ == '__main__':
main()
|
Beta Was this translation helpful? Give feedback.
-
I use the following code to construct a M3L6 cage. Cu_atom = stk.BuildingBlock(
smiles='[Cu+2]',
functional_groups=(
stk.SingleAtom(stk.Cu(0, charge=2))
for i in range(6)
),
position_matrix=([0, 0, 0], ),
)
bi_1 = stk.BuildingBlock(
smiles='C(=O)(O)Br',
functional_groups=[
stk.SmartsFunctionalGroupFactory(
smarts='[#6]~[#8]~[#1]',
bonders=(1, ),
deleters=(2, ),
),
stk.SmartsFunctionalGroupFactory(
smarts='[#6]~[#8X1]',
bonders=(1, ),
deleters=(),
),
]
)
show_stk_mol(bi_1)
mcomplex = stk.ConstructedMolecule(
stk.metal_complex.Paddlewheel(
metals=Cu_atom,
ligands=bi_1,
reaction_factory=stk.DativeReactionFactory(
stk.GenericReactionFactory(
bond_orders={
frozenset({
stk.GenericFunctionalGroup,
stk.SingleAtom,
}): 9,
},
),
),
optimizer=stk.MCHammer(),
)
)
show_stk_mol(bi_1)
show_stk_mol(mcomplex)
complex_bb = stk.BuildingBlock.init_from_molecule(mcomplex, (stk.BromoFactory(), ))
Hbdc = stk.BuildingBlock(
smiles=(
'C1=CC(=CC(=C1)Br)C#CC2=CC=C(C=C2)C#CC3=CC(=CC=C3)Br'
),
functional_groups=[stk.BromoFactory()],
)
cageH = stk.ConstructedMolecule(
stk.cage.M3L6(
building_blocks=(
complex_bb,
Hbdc,
),
optimizer=stk.MCHammer(),
)
)
show_stk_mol(Hbdc)
show_stk_mol(cageH)
stk.MolWriter().write(cageH, 'cageM3L6.mol') Then, my purpose is to use it as bb through the axial positions of one Rh atom (the external one) but doesn't work. To try to fix it, I have added a Br\NH2 in the Rh atoms (materials studio) and I have called it to react in a reaction (Honeycomb because the Cage has 3 positions to react and the ligand 2), but doesn't work again: import stk
bb1 = stk.BuildingBlock.init_from_file('cageT_Br.mol', [stk.BromoFactory()])
bb2 = stk.BuildingBlock('C1=CC(=CC=C1Br)Br', [stk.BromoFactory()])
cof = stk.ConstructedMolecule(
topology_graph=stk.cof.Honeycomb(
building_blocks=(bb1, bb2),
lattice_size=(3, 3, 1),
# Setting scale_steps to False tends to lead to a
# better structure.
optimizer=stk.Collapser(scale_steps=False),
),
) When I use the same code of cofs, but the functional groups are located in the linkers (for example in an M2L4 lantern) works perfectly. import stk
bb1 = stk.BuildingBlock.init_from_file('cageCHO.mol', [stk.AldehydeFactory()])
bb2 = stk.BuildingBlock('C1=CC(=CC=C1N)N', [stk.PrimaryAminoFactory()])
cof = stk.ConstructedMolecule(
topology_graph=stk.cof.PeriodicKagome(
building_blocks=(bb1, bb2),
lattice_size=(3, 3, 1),
# Setting scale_steps to False tends to lead to a
# better structure.
optimizer=stk.Collapser(scale_steps=False),
),
)
show_stk_mol(cof)
stk.MolWriter().write(cof, 'cof.mol') Thank you so much for your help |
Beta Was this translation helpful? Give feedback.
-
This is difficult to read, please use 3` to generate nice code blocks. (the preview tab helps you see what your comment will look like) I am glad it works though? As far as I can tell? |
Beta Was this translation helpful? Give feedback.
-
Sorry for the inconvenience. I have edited it with the 3' |
Beta Was this translation helpful? Give feedback.
-
Thank you! So you are getting the structure you were aiming for? If so, @lukasturcani can close this issue. Please feel free to ask more questions or join our discord if you want to discuss stk usage! |
Beta Was this translation helpful? Give feedback.
-
No, I cannot obtain the desired structure. Because what I want is to connect the M3L6 cage through the axial positions (to achieve a 2D extended network with a ditopic linker). |
Beta Was this translation helpful? Give feedback.
-
The first issue with your code is that the Kagome COF requires a 4 functional group BB and a 2 functional group BB but the M3L6 with FGs on the axial positions of the metals will be a 3 functional group BB. Below, I use the Honeycomb Cof topology with the M3L6 cage. Maybe copy that into the jupyter notebook and build from there? import numpy as np
import stk
import stko
class AxialPaddlewheel(stk.metal_complex.MetalComplex):
"""
Represents a metal complex topology graph.
Two distinct metal building blocks, one with five functional
groups, one with four.
Binding ligand building blocks with two functional groups are
required for this topology graph and axial ligand building
blocks with one functional group are required.
When using a :class:`dict` for initialization, a
:class:`.BuildingBlock` needs to be assigned to each of the
following numbers:
| axial_metal: (0, )
| other_metal: (1, )
| ligands: (0, 1, 2, 3)
| axial_ligand: (4, )
See :class:`.MetalComplex` for more details and examples.
"""
_metal_vertex_prototypes = (
stk.metal_complex.vertices.MetalVertex(0, [0, 1, 0]),
stk.metal_complex.vertices.MetalVertex(1, [0, -1, 0]),
)
_ligand_vertex_prototypes = (
stk.metal_complex.vertices.BiDentateLigandVertex(2, [2, 0, 0]),
stk.metal_complex.vertices.BiDentateLigandVertex(3, [0, 0, 2]),
stk.metal_complex.vertices.BiDentateLigandVertex(4, [-2, 0, 0]),
stk.metal_complex.vertices.BiDentateLigandVertex(5, [0, 0, -2]),
stk.metal_complex.vertices.MonoDentateLigandVertex(6, [0, 2, 0]),
)
_edge_prototypes = (
stk.Edge(
id=0,
vertex1=_metal_vertex_prototypes[0],
vertex2=_ligand_vertex_prototypes[0],
position=[0.1, 0.5, 0],
),
stk.Edge(
id=1,
vertex1=_metal_vertex_prototypes[1],
vertex2=_ligand_vertex_prototypes[0],
position=[0.1, -0.5, 0],
),
stk.Edge(
id=2,
vertex1=_metal_vertex_prototypes[0],
vertex2=_ligand_vertex_prototypes[1],
position=[0, 0.5, 0.1],
),
stk.Edge(
id=3,
vertex1=_metal_vertex_prototypes[1],
vertex2=_ligand_vertex_prototypes[1],
position=[0, -0.5, 0.1],
),
stk.Edge(
id=4,
vertex1=_metal_vertex_prototypes[0],
vertex2=_ligand_vertex_prototypes[2],
position=[-0.1, 0.5, 0],
),
stk.Edge(
id=5,
vertex1=_metal_vertex_prototypes[1],
vertex2=_ligand_vertex_prototypes[2],
position=[-0.1, -0.5, 0],
),
stk.Edge(
id=6,
vertex1=_metal_vertex_prototypes[0],
vertex2=_ligand_vertex_prototypes[3],
position=[0, 0.5, -0.1],
),
stk.Edge(
id=7,
vertex1=_metal_vertex_prototypes[1],
vertex2=_ligand_vertex_prototypes[3],
position=[0, -0.5, -0.1],
),
stk.Edge(
id=8,
vertex1=_metal_vertex_prototypes[0],
vertex2=_ligand_vertex_prototypes[4],
position=[0, 1.5, 0],
),
)
def main():
rdkit_opt = stko.MetalOptimizer(
metal_binder_distance=1.9,
metal_binder_forceconstant=1.0e2,
max_iterations=200,
)
fgs = [
stk.SmartsFunctionalGroupFactory(
smarts='[#6]~[#8]~[#1]',
bonders=(1, ),
deleters=(2, ),
),
stk.SmartsFunctionalGroupFactory(
smarts='[#6]~[#8X1]',
bonders=(1, ),
deleters=(),
),
]
ligand_bb = stk.BuildingBlock.init_from_file('org_carb.mol', fgs)
axial_bb = stk.BuildingBlock(
smiles='C(N)O',
functional_groups=(stk.AlcoholFactory(), ),
)
axial_bb.write('axial_bb.mol')
print(ligand_bb, axial_bb)
copper_atom = stk.BuildingBlock(
smiles='[Cu+2]',
functional_groups=(
stk.SingleAtom(stk.Cu(0, charge=2))
for i in range(5)
),
position_matrix=np.array([[0, 0, 0]]),
)
# Use a custom Paddlewheel topology that has axial positions.
copper_pw = stk.ConstructedMolecule(
AxialPaddlewheel(
metals={copper_atom: (0, 1)},
ligands={
ligand_bb: (0, 1, 2, 3),
axial_bb: (4, ),
},
optimizer=stk.MCHammer(),
)
)
copper_pw.write('copper_pw.mol')
copper_pw = rdkit_opt.optimize(copper_pw)
copper_pw.write('copper_pw_opt.mol')
copper_pw = stk.BuildingBlock.init_from_molecule(
copper_pw, (stk.BromoFactory(), )
)
ligand_bb = stk.BuildingBlock.init_from_file(
'org.mol', (stk.BromoFactory(), )
)
print(copper_pw, ligand_bb)
cage = stk.ConstructedMolecule(
topology_graph=stk.cage.M3L6(
building_blocks=(
copper_pw,
ligand_bb,
),
optimizer=stk.MCHammer(num_steps=2000),
)
)
cage.write('cage.mol')
# cage = rdkit_opt.optimize(cage)
# cage.write('cage_opt.mol')
cage_bb = stk.BuildingBlock.init_from_molecule(
molecule=cage,
functional_groups=(stk.PrimaryAminoFactory(), ),
)
linker_bb = stk.BuildingBlock(
smiles='C1=CC(=CC=C1N)N',
functional_groups=(stk.PrimaryAminoFactory(), ),
)
print(cage_bb, linker_bb)
cof = stk.ConstructedMolecule(
topology_graph=stk.cof.Honeycomb(
building_blocks=(cage_bb, linker_bb),
lattice_size=(2, 2, 1),
# Setting scale_steps to False tends to lead to a
# better structure.
optimizer=stk.Collapser(scale_steps=False),
),
)
cof.write('cof.mol')
if __name__ == '__main__':
main()
|
Beta Was this translation helpful? Give feedback.
-
Clearly, you will need to modify the building blocks to be the chemical structures you are targeting. I hope this makes sense. |
Beta Was this translation helpful? Give feedback.
-
After several tries, it works!!! Amazing work. Thank you so much for your help! |
Beta Was this translation helpful? Give feedback.
-
Excellent! Always happy to help and I will get the second round (I will be virtually at EuroMOF if that is in your field?). @lukasturcani please close this issue. |
Beta Was this translation helpful? Give feedback.
The first issue with your code is that the Kagome COF requires a 4 functional group BB and a 2 functional group BB but the M3L6 with FGs on the axial positions of the metals will be a 3 functional group BB.
Below, I use the Honeycomb Cof topology with the M3L6 cage. Maybe copy that into the jupyter notebook and build from there?