-
Notifications
You must be signed in to change notification settings - Fork 1
/
adtbinomqueue_impl.i
686 lines (627 loc) · 18 KB
/
adtbinomqueue_impl.i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
{@discard
This file is a part of the PascalAdt library, which provides
commonly used algorithms and data structures for the FPC and Delphi
compilers.
Copyright (C) 2004, 2005 by Lukasz Czajka
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA }
{@discard
adtbinomqueue_impl.i::prefix=&_mcp_prefix&::item_type=&ItemType&
}
&include adtbinomqueue.defs
&include adtbinomqueue_impl.mcp
&define TBinomialTreeNode T&_mcp_prefix&BinomialTreeNode
&define PBinomialTreeNode P&_mcp_prefix&BinomialTreeNode
{ Notes on the implementation of TBinomialQueue: }
{ TBinomialQueue is a binomial priority queue. It consists of at most
log(n) binomial trees, each of different size. The roots of the
binomial trees are stored in the FTrees array. A binomial tree is
denoted as B(k). A tree B(k) has 2^k nodes, and its root is a parent
of k binomial trees: B(k-1), B(k-2), ..., B(0) from left to
right. B(0) is a single node. The tree at FTrees[k] is B(k). }
{ Due to this organisation it is comparatively easy to merge two
binomial queues. The algorithm just imitates the algorithm of the
addition of two binary numbers. Other operations are implemented
using this notion. }
{ FSize stores the overall number of items. }
{ A position within a TBinomialQueue is represented by a (node,index)
pair, where node is a pointer to the positon, index is the index of
the tree containing node within FTrees. The finish position is
represented by (nil,-1). }
{ ---------------------- TBinomialQueue ------------------------------ }
constructor TBinomialQueue.Create;
begin
inherited Create;
FTrees := nil;
end;
constructor TBinomialQueue.CreateCopy(const cont : TBinomialQueue;
const itemCopier : IUnaryFunctor);
function CopyTree(node : PBinomialTreeNode) : PBinomialTreeNode;
var
pdest : ^PBinomialTreeNode;
destParent, dest : PBinomialTreeNode;
begin
Assert((node^.Parent = nil) and (node^.RightSibling = nil));
Result := nil;
pdest := @Result;
destParent := nil;
{ copy the tree while going pre-order }
try
while node <> nil do
begin
NewNode(pdest^, DefaultItem); { may raise }
Inc(FSize);
with pdest^^ do
begin
Parent := destParent;
Item := itemCopier.Perform(node^.Item); { may raise }
end;
if node^.LeftmostChild <> nil then
begin
node := node^.LeftmostChild;
destParent := pdest^;
pdest := @pdest^^.LeftmostChild;
end else
begin
dest := nil;
while (node^.Parent <> nil) and (node^.RightSibling = nil) do
begin
node := node^.Parent;
dest := destParent;
destParent := destParent^.Parent;
end;
if dest <> nil then
begin
pdest := @dest^.RightSibling;
node := node^.RightSibling;
end else
break;
end;
end;
except
DestroyTree(Result, false);
raise;
end;
end;
var
i : IndexType;
begin
inherited CreateCopy(TPriorityQueueAdt(cont));
if itemCopier <> nil then
begin
SetLength(FTrees, Length(cont.FTrees)); { may raise }
for i := 0 to Length(FTrees) - 1 do
FTrees[i] := nil;
for i := 0 to Length(FTrees) - 1 do
begin
if cont.FTrees[i] <> nil then
FTrees[i] := CopyTree(cont.FTrees[i]); { may raise }
end;
end;
end;
destructor TBinomialQueue.Destroy;
begin
Clear;
inherited;
end;
function TBinomialQueue.FirstIndex : IndexType;
var
i : IndexType;
minItem : ItemType;
begin
Assert(FSize <> 0);
Result := 0;
while FTrees[Result] = nil do
Inc(Result);
minItem := FTrees[Result]^.Item;
i := Result + 1;
while i < Length(Ftrees) do
begin
if (FTrees[i] <> nil) and
(_mcp_lt(Ftrees[i]^.Item, minItem)) then
begin
minItem := Ftrees[i]^.Item;
Result := i;
end;
Inc(i);
end;
end;
procedure TBinomialQueue.DestroyTree(node : PBinomialTreeNode;
disposeItems : Boolean);
var
nnode : PBinomialTreeNode;
begin
Assert((node = nil) or ((node^.Parent = nil) and (node^.RightSibling = nil)));
{ destroy the tree while going post-order }
node := LeftMostLeafNode(node);
while node <> nil do
begin
nnode := NextPostOrderNode(node);
if disposeItems then
DisposeItem(node^.Item);
Dec(FSize);
{ since we are traversing post-order, the node will never be
visited again, even not while coming towards some other node }
DisposeNode(node);
node := nnode;
end;
end;
procedure TBinomialQueue.ConnectAsLeftmostChild(parent, node : PBinomialTreeNode);
begin
Assert((node^.Parent = nil) and (node^.RightSibling = nil));
node^.Parent := parent;
node^.RightSibling := parent^.LeftmostChild;
Parent^.LeftmostChild := node;
end;
procedure TBinomialQueue.CheckTreesLength(additionalSize : SizeType);
var
oldlen : SizeType;
i : IndexType;
begin
if FSize + additionalSize > (1 shl Length(FTrees)) - 1 then
begin
oldlen := Length(FTrees);
SetLength(FTrees, CeilLog2(FSize + additionalSize));
for i := oldlen to Length(FTrees) - 1 do
FTrees[i] := nil;
end;
end;
{ returns the root of the tree of the merged nodes }
function TBinomialQueue.MergeNodes(node1, node2 : PBinomialTreeNode) : PBinomialTreeNode;
begin
if _mcp_lte(node1^.Item, node2^.Item) then
begin
ConnectAsLeftmostChild(node1, node2);
Result := node1;
end else
begin
ConnectAsLeftmostChild(node2, node1);
Result := node2;
end;
end;
{ CheckTreesLength should be called earlier with the number of items
in <forest> }
procedure TBinomialQueue.MergeForest(forest : TBinomialForest);
var
i : IndexType;
carry, node : PBinomialTreeNode;
begin
{ FTrees should have been grown earlier }
Assert(Length(forest) <= Length(FTrees));
i := 0;
carry := nil;
while i < Length(forest) do
begin
if (forest[i] <> nil) and (FTrees[i] <> nil) then
begin
node := MergeNodes(forest[i], FTrees[i]);
FTrees[i] := carry;
carry := node;
end else if carry <> nil then
begin
if forest[i] <> nil then
begin
Assert(FTrees[i] = nil);
carry := MergeNodes(forest[i], carry);
end else if FTrees[i] <> nil then
begin
carry := MergeNodes(FTrees[i], carry);
FTrees[i] := nil;
end else
begin
FTrees[i] := carry;
carry := nil;
end;
end else if forest[i] <> nil then
begin
Assert(FTrees[i] = nil);
FTrees[i] := forest[i];
end;
Inc(i);
end;
while (i < Length(FTrees)) and (carry <> nil) do
begin
if FTrees[i] <> nil then
begin
carry := MergeNodes(carry, FTrees[i]);
FTrees[i] := nil;
end else
begin
FTrees[i] := carry;
carry := nil;
end;
Inc(i);
end;
end;
function TBinomialQueue.InsertNode(node : PBinomialTreeNode) : IndexType;
var
i : IndexType;
begin
Result := -1;
Assert((node^.Parent = nil) and (node^.RightSibling = nil) and
(node^.LeftmostChild = nil));
if (FSize = (1 shl Length(FTrees)) - 1) then
begin
{ we would have an 'overflow' - grow the array }
try
SetLength(FTrees, Length(FTrees) + 1); { may raise }
FTrees[Length(FTrees) - 1] := nil;
except
DisposeNode(node);
raise;
end;
end;
{ perform an operation analogous to binary addition of numbers on
the array of trees - node is an equivalent of a carry flag }
for i := 0 to Length(FTrees) - 1 do
begin
if FTrees[i] <> nil then
begin
node := MergeNodes(node, FTrees[i]);
FTrees[i] := nil;
end else
begin
FTrees[i] := node;
node := nil;
Result := i;
break;
end;
end;
Assert(node = nil, msgInternalError);
Inc(FSize);
end;
function TBinomialQueue.DeleteNode(index : IndexType) : ItemType;
var
node, child : PBinomialTreeNode;
i : IndexType;
forest : TBinomialForest;
begin
Result := FTrees[index]^.Item;
node := FTrees[index];
SetLength(forest, index); { may raise }
Assert(index = NodeChildren(node));
child := node^.LeftmostChild;
for i := Length(forest) - 1 downto 0 do
begin
forest[i] := child;
child := child^.RightSibling;
with forest[i]^ do
begin
Parent := nil;
RightSibling := nil;
end;
end;
FTrees[index] := nil;
{ this cannot raise an exception, since we are actually removing an
item, not adding, so more space certainly will not be needed. }
MergeForest(forest);
if (Length(FTrees) <> 0) and (FTrees[Length(FTrees) - 1] = nil) then
SetLength(FTrees, Length(FTrees) - 1);
DisposeNode(node);
Dec(FSize);
end;
procedure TBinomialQueue.NewNode(var node : PBinomialTreeNode; aitem : ItemType);
begin
New(node);
with node^ do
begin
Parent := nil;
RightSibling := nil;
LeftmostChild := nil;
Item := aitem;
end;
end;
procedure TBinomialQueue.DisposeNode(node : PBinomialTreeNode);
begin
Dispose(node);
end;
function TBinomialQueue.Start : TBinomialQueueIterator;
begin
if FSize <> 0 then
Result := TBinomialQueueIterator.Create(FTrees[0], 0, self)
else
Result := TBinomialQueueIterator.Create(nil, -1, self);
end;
function TBinomialQueue.Finish : TBinomialQueueIterator;
begin
Result := TBinomialQueueIterator.Create(nil, -1, self);
end;
function TBinomialQueue.CopySelf(const ItemCopier : IUnaryFunctor) : TContainerAdt;
begin
Result := TBinomialQueue.CreateCopy(self, itemcopier);
end;
procedure TBinomialQueue.Swap(cont : TContainerAdt);
begin
if cont is TBinomialQueue then
begin
BasicSwap(cont);
ExchangePtr(FTrees, TBinomialQueue(cont).FTrees);
ExchangeData(FSize, TBinomialQueue(cont).FSize, SizeOf(SizeType));
end else
inherited;
end;
procedure TBinomialQueue.Insert(aitem : ItemType);
var
node : PBinomialTreeNode;
begin
NewNode(node, aitem); { may raise, but harmless }
InsertNode(node);
end;
function TBinomialQueue.First : ItemType;
begin
Assert(FSize <> 0, msgReadEmpty);
Result := FTrees[FirstIndex]^.Item;
end;
function TBinomialQueue.ExtractFirst : ItemType;
begin
Result := DeleteNode(FirstIndex);
end;
procedure TBinomialQueue.Merge(aqueue : TPriorityQueueAdt);
var
forest : TBinomialForest;
bqueue : TBinomialQueue;
begin
Assert(aqueue is TBinomialQueue);
bqueue := TBinomialQueue(aqueue);
forest := bqueue.FTrees;
CheckTreesLength(bqueue.FSize); { may raise }
{ MergeForest is exception-safe, so as long as bqueue is changed
only after a successful invocation of this method, the Merge
method is also exception-safe }
MergeForest(forest);
FSize := FSize + bqueue.FSize;
bqueue.FTrees := nil;
bqueue.FSize := 0;
bqueue.Destroy;
end;
procedure TBinomialQueue.Clear;
var
i : IndexType;
begin
for i := 0 to Length(FTrees) - 1 do
DestroyTree(FTrees[i], true);
Ftrees := nil;
Assert(FSize = 0);
end;
function TBinomialQueue.Empty : Boolean;
begin
Result := FSize = 0;
end;
function TBinomialQueue.Size : SizeType;
begin
Result := FSize;
end;
{ --------------------- TBinomialQueueIterator -------------------------- }
constructor TBinomialQueueIterator.Create(anode : PBinomialTreeNode;
atreeindex : IndexType;
acont : TBinomialQueue);
begin
inherited Create(acont);
FNode := anode;
FTreeIndex := atreeindex;
FCont := acont;
if (FNode = nil) and (FTreeIndex <> -1) then
AdvanceToNearestItem;
end;
procedure TBinomialQueueIterator.AdvanceToNearestItem;
begin
Assert(FTreeIndex <> -1);
if FCont.FSize <> 0 then
begin
while FNode = nil do
begin
Inc(FTreeIndex);
if FTreeIndex < Length(FCont.FTrees) then
begin
FNode := FCont.Ftrees[FTreeIndex];
end else
begin
FTreeIndex := -1;
break;
end;
end;
end else
begin
FNode := nil;
FTreeIndex := -1;
end;
end;
procedure TBinomialQueueIterator.RetreatToNearestItem;
begin
Assert(FTreeIndex <> -1);
if FCont.FSize <> 0 then
begin
while FNode = nil do
begin
Dec(FTreeIndex);
Assert(FTreeIndex >= 0, msgRetreatingStartIterator);
FNode := RightMostLeafNode(FCont.Ftrees[FTreeIndex]);
end;
end else
begin
FNode := nil;
FTreeIndex := -1;
end;
end;
function TBinomialQueueIterator.CopySelf : TIterator;
begin
Result := TBinomialQueueIterator.Create(FNode, FTreeIndex, FCont);
end;
function TBinomialQueueIterator.Equal(const Pos : TIterator) : Boolean;
begin
Assert(pos is TBinomialQueueIterator, msgInvalidIterator);
Result := TBinomialQueueIterator(pos).FNode = FNode;
end;
function TBinomialQueueIterator.GetItem : ItemType;
begin
Assert(FNode <> nil, msgInvalidIterator);
Result := FNode^.Item;
end;
procedure TBinomialQueueIterator.SetItem(aitem : ItemType);
begin
Assert(FNode <> nil, msgInvalidIterator);
with FCont do
DisposeItem(FNode^.Item);
FNode^.Item := aitem;
ResetItem;
end;
procedure TBinomialQueueIterator.ResetItem;
function GetMinimalChild(node : PBinomialTreeNode) : PBinomialTreeNode;
begin
Result := node^.LeftmostChild;
if Result <> nil then
begin
with FCont do
begin
node := Result^.RightSibling;
while node <> nil do
begin
if _mcp_lt(node^.Item, Result^.Item) then
Result := node;
node := node^.RightSibling;
end;
end;
end;
end;
var
child : PBinomialTreeNode;
begin
with FCont do
begin
if (FNode^.Parent <> nil) and
(_mcp_lt(FNode^.Item, FNode^.Parent^.Item)) then
begin
repeat
adtutils.ExchangeItem(FNode^.Item, FNode^.Parent^.Item);
FNode := FNode^.Parent;
until (FNode^.Parent = nil) or
(_mcp_gte(FNode^.Item, FNode^.Parent^.Item));
end else if FNode^.LeftmostChild <> nil then
begin
child := GetMinimalChild(FNode);
while (child <> nil) and
(_mcp_lt(child^.Item, FNode^.Item)) do
begin
adtutils.ExchangeItem(child^.Item, FNode^.Item);
FNode := child;
child := GetMinimalChild(FNode);
end;
end;
end;
end;
procedure TBinomialQueueIterator.ExchangeItem(iter : TIterator);
begin
raise EDefinedOrder.Create('TBinomialQueueIterator.ExchangeItem');
end;
procedure TBinomialQueueIterator.Advance;
begin
Assert(FNode <> nil, msgAdvancingFinishIterator);
FNode := NextPreOrderNode(FNode);
if FNode = nil then
begin
Inc(FTreeIndex);
if FTreeIndex <> Length(FCont.FTrees) then
begin
FNode := FCont.FTrees[FTreeIndex];
AdvanceToNearestItem;
end else
begin
FTreeIndex := -1;
end;
end;
end;
procedure TBinomialQueueIterator.Retreat;
begin
Assert(not IsStart, msgRetreatingStartIterator);
with FCont do
begin
if FNode = nil then
begin
FNode := RightMostLeafNode(FTrees[Length(FTrees) - 1]);
FTreeIndex := Length(FTrees) - 1;
RetreatToNearestItem;
end else
begin
if FNode^.Parent <> nil then
begin
FNode := PrevPreOrderNode(FNode, FTrees[FTreeIndex]);
end else
begin
Dec(FTreeIndex);
FNode := RightMostLeafNode(FTrees[FTreeIndex]);
RetreatToNearestItem;
end;
end;
end;
end;
procedure TBinomialQueueIterator.Insert(aitem : ItemType);
var
node : PBinomialTreeNode;
begin
FCont.NewNode(node, aitem);
FTreeIndex := FCont.InsertNode(node);
FNode := node;
end;
function TBinomialQueueIterator.Extract : ItemType;
begin
Assert(FNode <> nil, msgDeletingInvalidIterator);
{ move the node up the tree }
Result := FNode^.Item;
FNode^.Item := DefaultItem;
while FNode^.Parent <> nil do
begin
adtutils.ExchangeItem(FNode^.Item, FNode^.Parent^.Item);
FNode := FNode^.Parent;
end;
FCont.DeleteNode(FTreeIndex);
{ just move to the first item of the container to assure that all
items are visited }
if FCont.FSize <> 0 then
begin
FNode := FCont.FTrees[0];
FTreeIndex := 0;
AdvanceToNearestItem;
end else
begin
FNode := nil;
FTreeIndex := -1;
end;
end;
function TBinomialQueueIterator.IsStart : Boolean;
var
i : IndexType;
begin
with FCont do
begin
if FSize <> 0 then
begin
if FNode = FTrees[FTreeIndex] then
begin
i := 0;
while FTrees[i] = nil do
Inc(i);
result := (FNode = FTrees[i]);
end else
Result := false;
end else
Result := FNode = nil;
end;
end;
function TBinomialQueueIterator.IsFinish : Boolean;
begin
Result := FNode = nil;
end;
function TBinomialQueueIterator.Owner : TContainerAdt;
begin
Result := FCont;
end;