-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathcache_features.py
64 lines (53 loc) · 2.1 KB
/
cache_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
import yaml
from allennlp.modules.elmo import Elmo, batch_to_ids
from data import ParsedCorpus
if __name__ == "__main__":
with open("setting.yaml", "r") as stream:
setting = yaml.load(stream)
base_dirs = [setting["parsed_data_path"]["test"],
setting["parsed_data_path"]["dev"],
setting["parsed_data_path"]["unlabeled"]]
print("base_dirs are", base_dirs)
corpus = ParsedCorpus(base_dirs)
sentences_generator = corpus.get_single("sentences")
corefs_generator = corpus.get_single("corefs")
# if you are looking for example, please see https://allennlp.org/elmo
options_file = "/path/to/options.json"
weight_file = "path/to/weights.hdf5"
encoder = Elmo(options_file, weight_file, 1, dropout=0)
encoder.eval()
encoder.cuda()
for _ in range(len(corpus)):
sentences, file_name = next(sentences_generator)
corefs, _ = next(corefs_generator)
save_name = file_name + ".pt"
# preprocess all sentences in a document
doc = []
for sentence in sentences:
sentence = [token["word"] for token in sentence["tokens"]]
doc.append(sentence)
character_ids = batch_to_ids(doc).cuda()
# [sentence_num, sentence_len, 256]
embeddings = encoder(character_ids)['elmo_representations'][0].detach().cpu().data
# padding slot realizations
max_rr = 0
id2f = {}
id2r = {}
for coref in corefs.values():
rr = len(coref)
if rr > max_rr:
max_rr = rr
for realization in coref:
id = realization["id"]
sent_num = realization["sentNum"]
head_index = realization["headIndex"]
# [256]
rep = embeddings[sent_num, head_index, :].detach()
id2f[id] = rep
id2r[id] = rr
for id, rr in id2r.items():
id2r[id] = rr / max_rr
torch.save({"fs": id2f, "rs": id2r}, save_name)
print("Processing %s to %s" % (file_name, save_name))
print("Done!")