-
Notifications
You must be signed in to change notification settings - Fork 28
/
NTU_objects.py
514 lines (459 loc) · 22.1 KB
/
NTU_objects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import numpy as np
import networkx as nx
import scipy.optimize as opt
from time import time
def list_prefs(x,xletter,yletter,αo_y):
nby = len(αo_y) - 1
xsprefs = xletter + str(x) +' : '
for y in range(nby):
ind = np.where(αo_y== (nby - y ))[0][0]
if (ind == nby):
break
xsprefs = xsprefs + yletter + str( ind ) + ' > '
return(xsprefs[:-3])
class NTU_market:
def __init__(self,α_x_y,γ_x_y,n_x = np.array([]), m_y = np.array([])):
nbx,nby = α_x_y.shape
self.α_x_y = np.hstack((α_x_y,np.zeros((nbx,1) )))
self.γ_x_y = np.vstack((γ_x_y,np.zeros( (1,nby) )))
if n_x.size == 0:
n_x = np.ones(nbx)
if m_y.size == 0:
m_y = np.ones(nby)
self.n_x,self.m_y = n_x, m_y
self.largex,self.largey = nby+1, nbx+1
self.smallx,self.smally = -1, -1
self.nbx,self.nby = nbx, nby
self.αo_x_y = np.zeros((nbx,nby+1), dtype = 'int64')
self.γo_x_y = np.zeros((nbx+1,nby), dtype = 'int64')
self.prefslistα_x_y = np.zeros((nbx,nby+1), dtype = 'int64')
self.prefslistγ_x_y = np.zeros((nbx+1,nby), dtype = 'int64')
self.traceuo_x_t = np.array([])
self.traceu_x_t = np.array([])
for x in range(nbx):
thelistx = (- self.α_x_y )[x,:].argsort()
self.αo_x_y[x, thelistx] = nby - np.arange(nby+1)
self.prefslistα_x_y[x,:] = (thelistx) % (self.nby+1)
for y in range(nby):
thelisty = ( - self.γ_x_y)[:,y].argsort()
self.γo_x_y[thelisty, y] = nbx - np.arange(nbx+1)
self.prefslistγ_x_y[:,y] = (thelisty) % (self.nbx+1)
self.comp_nbsteps = -1
self.comp_time = -1
self.eq_μ_x_y = np.array([])
self.eq_u_x = np.array([])
self.eq_v_y = np.array([])
def print_prefs(self,xs=[],ys=[]):
if xs == [] and ys==[] :
xs = range(self.nbx)
ys = range(self.nby)
if xs != [] :
for x in xs :
print(list_prefs(x,'x','y',self.αo_x_y[x,:]))
if xs != [] and ys != [] :
print('===')
if ys != [] :
for y in ys :
print(list_prefs(y,'y','x',self.γo_x_y[:,y]))
def is_GS_stable(self, μ_x_y = None, output=0 ):
if (min(self.n_x)<1) or (max(self.n_x)>1) or (min(self.m_y)<1) or (max(self.m_y)>1):
if output > 0 :
print('n_x or m_y do not only contain ones.')
return(False)
if (μ_x_y is None):
μ_x_y = self.eq_μ_x_y
μext_x_y0 = np.hstack([μ_x_y, 1-np.sum(μ_x_y,axis = 1).reshape(-1,1) ])
μext_x0_y = np.vstack([μ_x_y, 1-np.sum(μ_x_y,axis = 0).reshape(1,-1) ])
if (np.logical_and(μext_x_y0 != 0 , μext_x_y0 != 1 )).any() or (np.logical_and(μext_x0_y != 0 , μext_x0_y != 1 )).any():
if output > 0 :
print('The μ is not feasible.')
return(False)
uo_x = np.sum(μext_x_y0 * self.αo_x_y, axis = 1)
vo_y = np.sum(μext_x0_y * self.γo_x_y, axis = 0)
for x in range(self.nbx):
for y in range(self.nby):
if (self.αo_x_y[x,y] > uo_x[x]) and (self.γo_x_y[x,y] > vo_y[y]):
if output > 0 :
print('The matching is not stable. One blocking pair is: x'+str(x)+',y'+str(y)+'.')
return(False)
for x in range(self.nbx):
if (self.αo_x_y[x,self.nby] > uo_x[x]):
if output > 0 :
print('The matching is not stable. One blocking pair is: x'+str(x)+',y0.')
return(False)
for y in range(self.nby):
if (self.γo_x_y[self.nbx,y] > vo_y[y]):
if output > 0 :
print('The matching is not stable. One blocking pair is: x0,y'+str(y)+'.')
return(False)
if output > 0 :
print('The matching is stable.')
return (True)
def μ_from_uo(self, uo_x):
return np.where( (self.αo_x_y == uo_x.reshape((-1,1))) , 1 , 0 )[:,0:-1]
def μ_from_vo(self, vo_y):
return np.where( self.γo_x_y == vo_y , 1 , 0 )[0:-1,:]
def uo_from_μ(self, μ_x_y = None):
if (μ_x_y is None):
μ_x_y = self.eq_μ_x_y
return np.sum(np.hstack([μ_x_y, (self.n_x-np.sum(μ_x_y,axis = 1)).reshape(-1,1) ]) * self.αo_x_y, axis = 1)
def vo_from_μ(self, μ_x_y = None):
if (μ_x_y is None):
μ_x_y = self.eq_μ_x_y
return np.sum(np.vstack([μ_x_y, (self.m_y-np.sum(μ_x_y,axis = 0)).reshape(1,-1) ]) * self.γo_x_y, axis = 0)
def u_from_μ(self, μ_x_y = None):
if (μ_x_y is None):
μ_x_y = self.eq_μ_x_y
return np.sum(np.hstack([μ_x_y, (self.n_x-np.sum(μ_x_y,axis = 1)).reshape(-1,1) ]) * self.α_x_y, axis = 1)
def v_from_μ(self, μ_x_y = None):
if (μ_x_y is None):
μ_x_y = self.eq_μ_x_y
return np.sum(np.vstack([μ_x_y, (self.m_y-np.sum(μ_x_y,axis = 0)).reshape(1,-1) ]) * self.γ_x_y, axis = 0)
def solveGaleShapley(self,output=0, trace=False):
if (output>=2):
print("Offers made and kept are denoted +1; offers made and rejected are denoted -1.")
self.comp_nbsteps = 0
tracemax = self.nbx*self.nby
if trace:
self.traceuo_x_t = np.zeros((tracemax,self.nbx))
μA_x_y = np.ones((self.nbx+1, self.nby+1), dtype = 'int64') # initially all offers are non rejected
while True :
μP_x_y = np.zeros((self.nbx+1, self.nby+1), dtype = 'int64')
props_x = np.ma.masked_array(self.αo_x_y, μA_x_y[0:-1,:] ==0).argmax(axis = 1) # x's makes an offer to their favorite y
μP_x_y[range(self.nbx),props_x] = 1
μP_x_y[self.nbx,0:self.nby] = 1
μE_x_y = np.zeros((self.nbx+1, self.nby+1), dtype = 'int64') # y's retains their favorite offer among those made:
rets_y = np.ma.masked_array(self.γo_x_y, μP_x_y[:,0:-1] ==0).argmax(axis = 0)
μE_x_y[rets_y,range(self.nby)] = 1
rej_x_y = μP_x_y - μE_x_y # compute rejected offers
rej_x_y[self.nbx,:] = 0
rej_x_y[:,self.nby] = 0
μA_x_y = μA_x_y - rej_x_y # offers from x that have been rejected are no longer available to x
if output >= 2:
print("Round "+str(self.comp_nbsteps)+":\n" , ( (2*μE_x_y-1) * μP_x_y)[0:-1,0:-1])
if trace and self.comp_nbsteps<tracemax:
for x in range(self.nbx):
self.traceuo_x_t[self.comp_nbsteps,x] = np.sum(self.αo_x_y [x,:] * μP_x_y[x,:])
self.comp_nbsteps +=1
if np.max(np.abs(rej_x_y)) == 0:
if trace:
self.traceuo_x_t = self.traceuo_x_t[0:min(self.comp_nbsteps,tracemax),:]
break # if all offers have been accepted, then algorithm stops
self.eq_μ_x_y = μE_x_y[0:-1,0:-1]
return (0)
def uo_from_vo(self,vo_y):
excluded = np.hstack([(self.γo_x_y < vo_y)[0:-1,:],np.zeros((self.nbx,1))])
return(np.ma.masked_array(self.αo_x_y, excluded ).max(axis = 1).data)
def vo_from_uo(self,uo_x):
excluded = np.vstack([(self.αo_x_y < uo_x.reshape((-1,1)))[:,0:-1],np.zeros((1,self.nby))])
return(np.ma.masked_array(self.γo_x_y, excluded ).max(axis = 0).data)
def solveAdachi(self,output=0,trace=False, startu_x = None, startv_y = None ):
self.comp_nbsteps = 0
tracemax = self.nbx*self.nby
if trace:
self.traceuo_x_t = np.zeros((tracemax,self.nbx))
if startu_x is None:
uo_x = self.largex * np.ones(self.nbx, dtype = 'int64') # x's utilities are highest
else:
uo_x = startu_x
if startv_y is None:
vo_y = self.smally * np.ones(self.nby, dtype = 'int64') # y's utilities are lowest
else:
vo_y = startv_y
while True :
uonew_x = self.uo_from_vo(vo_y) # each x proposes to favorite y among those willing to consider them
if (uonew_x == uo_x).all() :
if trace:
self.traceuo_x_t = self.traceuo_x_t[0:min(self.comp_nbsteps,tracemax),:]
break
uo_x = uonew_x
vo_y = self.vo_from_uo(uo_x) # each y proposes to favorite x among those willing to consider them
if output >= 2:
μP_x_y = self.μ_from_uo(uo_x)
μE_x_y = self.μ_from_vo(vo_y)
print("Round "+str(self.comp_nbsteps)+":\n","μ_P=\n" ,μP_x_y,"\n μ_E=\n", μE_x_y)
if trace and self.comp_nbsteps<tracemax:
self.traceuo_x_t[self.comp_nbsteps,:] = uo_x
self.comp_nbsteps += 1
self.eq_μ_x_y = self.μ_from_vo(vo_y)
return(0)
def Q_z(self,p_z):
uo_x = p_z[0:self.nbx]
vo_y = - p_z[self.nbx:(self.nbx+self.nby)]
uonew_x = self.uo_from_vo(vo_y)
vonew_y = self.vo_from_uo(uo_x)
return(np.append(uo_x - uonew_x,vonew_y - vo_y))
def cux_z(self,p_z):
uo_x = p_z[0:self.nbx]
vo_y = - p_z[self.nbx:(self.nbx+self.nby)]
uonew_x = self.uo_from_vo(vo_y)
return (np.append(uonew_x , - vo_y))
def cuy_z(self,p_z):
uo_x = p_z[0:self.nbx]
vo_y = - p_z[self.nbx:(self.nbx+self.nby)]
excluded = np.vstack([(self.αo_x_y < np.repeat([uo_x],self.nby+1,axis = 1).reshape((self.nbx,-1)))[:,0:-1],np.repeat(False,self.nby).reshape((-1,self.nby))])
vonew_y = self.vo_from_uo(uo_x)
return( np.append(uo_x, - vonew_y ) )
def solveCU(self,output=0,trace=False):
self.comp_nbsteps = 0
tracemax = self.nbx*self.nby
if trace:
self.traceuo_x_t = np.zeros((tracemax,self.nbx))
p_z = np.append(self.largex * np.ones(self.nbx), - self.smally * np.ones(self.nby) )
while True :
pnew_z = self.cux_z(p_z)
pnew_z = self.cuy_z(pnew_z)
if (pnew_z == p_z).all() :
if trace:
self.traceuo_x_t = self.traceuo_x_t[0:min(self.comp_nbsteps,tracemax),:]
break
p_z = pnew_z
if trace and self.comp_nbsteps<tracemax:
self.traceuo_x_t[self.comp_nbsteps,:] = p_z[0:self.nbx]
self.comp_nbsteps += 1
self.eq_μ_x_y = self.μ_from_vo(- p_z[self.nbx:(self.nbx+self.nby)])
return(0)
def damped_cux_z(self,p_z):
uo_x = p_z[0:self.nbx]
vo_y = - p_z[self.nbx:(self.nbx+self.nby)]
uonew_x = self.uo_from_vo(vo_y)
return (np.append(uo_x - np.where(uo_x > uonew_x, 1,0)+ np.where(uo_x < uonew_x, 1,0) , - vo_y))
def solveDampedCU(self,output=0,trace=False):
self.comp_nbsteps = 0
tracemax = self.nbx*self.nby
if trace:
self.traceuo_x_t = np.zeros((tracemax,self.nbx))
p_z = np.append(self.largex * np.ones(self.nbx), - self.smally * np.ones(self.nby) )
while True :
pnew_z = self.damped_cux_z(p_z) # each x proposes to favorite y among those willing to consider them:
pnew_z = self.cuy_z(pnew_z)
if (pnew_z == p_z).all() :
if trace:
self.traceuo_x_t = self.traceuo_x_t[0:min(self.comp_nbsteps,tracemax),:]
break
p_z = pnew_z
# each y proposes to favorite x among those willing to consider them:
if trace and self.comp_nbsteps<tracemax:
self.traceuo_x_t[self.comp_nbsteps,:] = p_z[0:self.nbx]
self.comp_nbsteps += 1
self.eq_μ_x_y = self.μ_from_vo(- p_z[self.nbx:(self.nbx+self.nby)])
return(0)
def solveDeferredAcceptance(self, algorithm = 'Adachi', output=0, trace=False):
start_time = time()
if algorithm == 'GS' :
self.solveGaleShapley(output,trace)
elif algorithm == 'Adachi' :
self.solveAdachi(output,trace)
elif algorithm == 'DARUM' :
self.solveDARUM(output,trace)
elif algorithm == 'CU' :
self.solveCU(output,trace)
else:
raise Exception("Algorithm " + algorithm + " is not implemented.")
self.comp_time = time() - start_time
if output >= 1:
print("Converged in ",self.comp_nbsteps," steps and ", self.comp_time, " seconds.")
if output == 1:
print("mu_x_y=",self.eq_μ_x_y)
return (0)
def matched_pairs(self, μ_x_y = None):
if μ_x_y is None:
μ_x_y = self.eq_μ_x_y
nzx,nzy = np.nonzero(μ_x_y)
return [(nzx[i],nzy[i]) for i in range(len(nzx) )]
def next_us(self,uo_x,down = True):
μ_x_y = self.μ_from_uo(uo_x)
vo_y = self.vo_from_uo(uo_x)
if down:
incr= -1
else:
incr = 1
g = nx.DiGraph()
xs = list(range(self.nbx))
ys = list(range(self.nbx,self.nby))
g.add_nodes_from(xs+ys)
g.add_edges_from([(x,self.nbx+y) for x,y in self.matched_pairs(μ_x_y)])
#μprime_x_y = np.where( (self.αo_x_y.T == uo_x + incr).T , 1 , 0 )[:,0:-1]
μprime_x_y = np.where( (self.αo_x_y[:,0:-1].T == uo_x + incr).T & (self.γo_x_y[0:-1,:]*incr <= vo_y * incr), 1 , 0 )
compatible_pairs = self.matched_pairs(μprime_x_y)
g.add_edges_from([(self.nbx+j,i) for (i,j) in compatible_pairs])
cycles = list(nx.simple_cycles(g))
newus = []
for c in cycles:
xs_to_update = [x for x in c if (x <self.nbx)]
nextu_x = uo_x.copy()
nextu_x[xs_to_update] += incr
newus.append(nextu_x)
return(newus)
def enumerate_us(self):
self.solveGaleShapley()
uo_x = np.sum(self.αo_x_y [:,0:-1] * self.eq_μ_x_y,axis = 1)
us_list = [uo_x.tolist()]
i = 0
while (i < len(us_list)):
inds_alreadyhere = []
us_toadd = [arr.tolist() for arr in self.next_us(np.array(us_list[i],dtype='int64'))]
for u_x in us_toadd:
if u_x in us_list:
inds_alreadyhere.append(us_list.index(u_x))
us_toadd.remove(u_x)
inds_toadd = list(range(len(us_list),len(us_list)+len(us_toadd) ))
us_list = us_list + us_toadd
i += 1
return(np.array([u for u in us_list],dtype = 'int64') )
def DTF(self ,u_x,v_y):
return np.maximum(u_x.reshape((-1,1)) - self.α_x_y[:,0:-1], v_y - self.γ_x_y[0:-1,:])
def is_aggregate_stable(self, μ_x_y =None ,u_x=None,v_y =None, output=0 ):
if μ_x_y is None:
μ_x_y = self.eq_μ_x_y
if u_x is None:
u_x = self.eq_u_x
if v_y is None:
v_y = self.eq_v_y
if (np.min(μ_x_y) < 0) or (np.min(self.n_x-np.sum(μ_x_y,axis = 1))<0) or (np.min(self.m_y-np.sum(μ_x_y,axis = 0))<0) :
if output > 0 :
print('The μ is not feasible.')
return(False)
if (np.min(u_x)<0) or (np.min(v_y)<0):
if output > 0 :
print('u_x < 0 for some x or v_y < 0 for some y.')
return(False)
D_x_y = self.DTF(u_x,v_y)
if np.min(D_x_y)<0 :
if output > 0 :
print('There is a blocking pair.')
return(False)
if np.sum(μ_x_y * D_x_y)>0 :
if output > 0 :
print('Complementary slackness does not hold.')
return(False)
if output > 0 :
print('The matching is stable.')
return (True)
def aggregateChoice_noHet(self,axis,μbar_x_y):
if axis == 0 : # if proposing side = x
n_x = self.n_x
nbx, nby = self.nbx, self.nby
prefs_x_y,α_x_y = self.prefslistα_x_y, self.α_x_y
else:
n_x = self.m_y
nbx, nby = self.nby, self.nbx
prefs_x_y, α_x_y = self.prefslistγ_x_y.T, self.γ_x_y.T
μ_x_y = np.zeros((nbx,nby+1))
u_x = np.zeros(nbx)
for x in range(nbx):
nxres = n_x[x]
for yind in prefs_x_y[x,]:
if yind == nby:
μ_x_y[x,yind] = nxres
break
if μbar_x_y[x,yind] > 0:
μ_x_y[x,yind] = min(nxres , μbar_x_y[x,yind])
nxres -= μ_x_y[x,yind]
if nxres == 0:
break
u_x[x]=α_x_y[x,yind]
return(μ_x_y,u_x)
def aggregateChoice_logit(self,axis,μbar_x_y):
if axis == 0 : # if proposing side = x
n_x = self.n_x
nbx = self.nbx
nby = self.nby
α_x_y = self.α_x_y
else:
n_x = self.m_y
nbx = self.nby
nby = self.nbx
α_x_y = self.γ_x_y.T
μ_x_y = np.zeros((nbx,nby+1))
u_x = np.zeros(nbx)
for x in range(nbx):
thesolμ = opt.brentq(lambda theμ : (theμ+ np.minimum(theμ*np.exp(α_x_y[x,0:-1]),μbar_x_y[x,:]).sum() - n_x[x]) ,0,n_x[x])
μ_x_y[x,0:-1] = np.minimum(thesolμ*np.exp(α_x_y[x,0:-1]),μbar_x_y[x,:])
μ_x_y[x,nby] = thesolμ
u_x[x] = - np.log(thesolμ / n_x[x])
return(μ_x_y,u_x)
def solveDARUM(self,het1 = 'none',het2 = 'none',output=0,trace=False,tol = 1e-5):
self.comp_nbsteps = 0
tracemax = 100*self.nbx*self.nby
if (output>=2):
print("Offers made and kept are denoted +1; offers made and rejected are denoted -1.")
if trace:
self.traceu_x_t = np.zeros((tracemax,self.nbx))
self.traceuo_x_t = np.zeros((tracemax,self.nbx))
μA_x_y = np.array([[min(self.n_x[x],self.m_y[y]) for y in range(self.nby)] for x in range(self.nbx)])
# initially all offers are non rejected
while True :
μP_x_y,self.eq_u_x = self.aggregateChoice(0 , μA_x_y,het1) # the x's pick their preferred offers among those not rejected
μE_y_x,self.eq_v_y = self.aggregateChoice(1, μP_x_y[:,0:-1].T,het2)
μE_x_y = μE_y_x.T # the y's pick their preferred offers among those made
rej_x_y = μP_x_y[:,0:-1] - μE_x_y[0:-1,:] # compute rejected offers
μA_x_y = μA_x_y - rej_x_y # offers from x that have been rejected are no longer available to x
if output >= 2:
print("Round "+str(self.comp_nbsteps)+":\n" , ( (2*μE_x_y[0:-1,:]-1) * μP_x_y[:,0:-1]))
if trace and self.comp_nbsteps < tracemax:
self.traceu_x_t[self.comp_nbsteps,:] = self.eq_u_x
for x in range(self.nbx):
self.traceuo_x_t[self.comp_nbsteps,x] = np.sum(self.αo_x_y [x,:] * μP_x_y[x,:])
self.comp_nbsteps +=1
if np.max(np.abs(rej_x_y)) < tol:
if trace:
self.traceu_x_t = self.traceu_x_t[0:min(self.comp_nbsteps,tracemax),:]
self.traceuo_x_t = self.traceuo_x_t[0:min(self.comp_nbsteps,tracemax),:]
break # if all offers have been accepted (within tolerange), then algorithm stops
self.eq_μ_x_y = μE_x_y[0:-1,:]
return (0)
def aggregateChoice(self,axis,μbar_x_y,heterogeneity = 'none'):
if heterogeneity == 'none':
μ_x_y,u_x = self.aggregateChoice_noHet(axis,μbar_x_y)
elif heterogeneity == 'logit':
μ_x_y,u_x = self.aggregateChoice_logit(axis,μbar_x_y)
else:
raise Exception("Heterogeneity " + heterogeneity + " is not supported.")
return (μ_x_y,u_x)
def solveIPFP(self,output=0,trace=False,tol = 1e-5):
self.comp_nbsteps = 0
tracemax = 100*self.nbx*self.nby
if trace:
self.traceu_x_t = np.zeros((tracemax,self.nbx))
μ_x0 = np.zeros(self.nbx)
μ_0y = self.m_y.astype(np.float64)
while True :
for x in range(self.nbx):
μ_x0[x] = opt.brentq (lambda theμ : (theμ+ np.minimum(theμ*np.exp(self.α_x_y[x,0:-1]),μ_0y*np.exp(self.γ_x_y[x,:])).sum() - self.n_x[x]) ,0,1.1*self.n_x[x])
μP_x_y = np.minimum(μ_x0.reshape((-1,1))*np.exp(self.α_x_y[:,0:-1]),μ_0y*np.exp(self.γ_x_y[0:-1,:]))
self.eq_u_x = -np.log(μ_x0 / self.n_x)
for y in range(self.nby):
μ_0y[y] = opt.brentq(lambda theμ : (theμ+ np.minimum(μ_x0*np.exp(self.α_x_y[:,y]),theμ*np.exp(self.γ_x_y[0:-1,y])).sum() - self.m_y[y]) ,0,1.1*self.m_y[y])
μE_x_y = np.minimum(μ_x0.reshape((-1,1))*np.exp(self.α_x_y[:,0:-1]),μ_0y*np.exp(self.γ_x_y[0:-1,:]))
self.eq_v_y = -np.log(μ_0y / self.m_y)
rej_x_y = μP_x_y - μE_x_y # compute rejected offers
if output >= 2:
print('μP_x_y=\n',μP_x_y)
print('μE_x_y=\n',μE_x_y)
if trace and self.comp_nbsteps < tracemax:
self.traceu_x_t[self.comp_nbsteps,:] = self.eq_u_x
self.comp_nbsteps +=1
if np.max(np.abs(rej_x_y)) < tol:
if trace:
self.traceu_x_t = self.traceu_x_t[0:min(self.comp_nbsteps,tracemax),:]
break # if all offers have been accepted (within tolerance), then algorithm stops
self.eq_μ_x_y = μE_x_y
return (0)
class Aligned_NTU_market(NTU_market):
def __init__(self,ϕ_x_y):
NTU_market.__init__(self,α_x_y = ϕ_x_y, γ_x_y = ϕ_x_y)
self.ϕ_x_y = ϕ_x_y
self.n,_ = ϕ_x_y.shape
ϕo_x_y = np.zeros(self.n* self.n)
ϕo_x_y[ϕ_x_y.flatten().argsort()] = 1+np.arange(self.n*self.n)
self.ϕo_x_y=ϕo_x_y.reshape((self.n,self.n))
def solveMaxMaxLex(self):
theϕo_x_y = self.ϕo_x_y.copy()
self.eq_μ_x_y = np.zeros((self.n,self.n), dtype = 'int64')
for k in range(self.n):
x,y = np.unravel_index(theϕo_x_y.argmax(),(self.n,self.n))
self.eq_μ_x_y[x,y]=1
theϕo_x_y[x,:]=0
theϕo_x_y[:,y]=0
return 0