-
Notifications
You must be signed in to change notification settings - Fork 2
/
HDU-changchun-1007.cpp
348 lines (323 loc) · 6.02 KB
/
HDU-changchun-1007.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/*
ID: mfs6174
email: mfs6174@gmail.com
PROG: ti
LANG: C++
*/
#include<iostream>
#include<fstream>
#include<string>
#include<sstream>
#include<cstring>
#include<algorithm>
#include<map>
#include<vector>
#include<queue>
#include<deque>
#include<iomanip>
#include<cmath>
#include<set>
#define sf scanf
#define pf printf
#define llg long long
using namespace std;
//ifstream inf("ti.in");
//ofstream ouf("ti.out");
const int maxlongint=2147483647;
const double INF=1e200;
const double Ling=1e-9;
bool fail;
inline int cwz(double x)
{
if (abs(x)<Ling)
return 0;
else
return (x>0)?1:-1;
}
struct P
{
double x;
double y;
//constructor
P(double a=0, double b=0)
{ x=a; y=b;}
P operator+(const P &b) const
{
return P(x + b.x, y + b.y);
}
P operator - (const P &b) const
{
return P(x - b.x, y - b.y);
}
bool operator<(const P &b) const//a在b逆时针
{
return x * b.y < y * b.x;
}
bool operator==(const P &b) const
{
return ((cwz(x-b.x)==0)&&(cwz(y-b.y)==0));
}
double operator ^ (const P &b) const //aXb
{
return x*b.y-b.x*y;
}
double operator *(const P &b) const
{
return x*b.x+y*b.y;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
};
struct SEG
{
P s,e;
SEG(P a=P(0,0), P b=P(0,0)) { s=a; e=b;}
void input()
{
s.input();e.input();
}
};
// 直线的解析方程 a*x+b*y+c=0 为统一表示,约定 a >= 0
struct L
{
double a;
double b;
double c;
L(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}
};
struct RECT
{
P zs,yx;
double w,h;
RECT(){}
RECT(P a,P b)
{
zs=a;
yx=b;
w=yx.x-zs.x;
h=zs.y-yx.y;
}
P mid()
{
return P(zs.x+w/2,yx.y+h/2);
}
RECT sub(int x,int y,int fks)
{
return RECT(P(zs.x+(x-1)*w/fks,yx.y+y*h/fks),P(zs.x+x*w/fks,yx.y+(y-1)*h/fks));
}
};
inline double dst(P p1,P p2)
{
return( sqrt( (p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y) ) );
}
inline double cha(P a,P b,P c)
{
return (b-a)^(c-a);
}
P gravity(P *p, int n)
{
double area = 0;
P center;
center.x = 0;
center.y = 0;
for (int i = 0; i < n-1; i++)
{
area += (p[i].x*p[i+1].y - p[i+1].x*p[i].y)/2;
center.x += (p[i].x*p[i+1].y - p[i+1].x*p[i].y) * (p[i].x + p[i+1].x);
center.y += (p[i].x*p[i+1].y - p[i+1].x*p[i].y) * (p[i].y + p[i+1].y);
}
area += (p[n-1].x*p[0].y - p[0].x*p[n-1].y)/2;
center.x += (p[n-1].x*p[0].y - p[0].x*p[n-1].y) * (p[n-1].x + p[0].x);
center.y += (p[n-1].x*p[0].y - p[0].x*p[n-1].y) * (p[n-1].y + p[0].y);
center.x /= 6*area;
center.y /= 6*area;
return center;
}
const int maxn=1000;
typedef double longd;
const longd eps=1e-9;
typedef long long lld;
class Point3
{
public:
longd x,y,z;
Point3(){x=y=z=0;}
void iin()
{
scanf("%lf%lf%lf",&x,&y,&z);
}
};
Point3 operator -(Point3 a,Point3 b)
{
Point3 c;
c.x=a.x-b.x;
c.y=a.y-b.y;
c.z=a.z-b.z;
return c;
}
Point3 operator +(Point3 a,Point3 b)
{
Point3 c;
c.x=a.x+b.x;
c.y=a.y+b.y;
c.z=a.z+b.z;
return c;
}
Point3 operator *(Point3 a,longd d)
{
a.x*=d;
a.y*=d;
a.z*=d;
return a;
}
Point3 operator /(Point3 a,longd d)
{
a.x/=d;
a.y/=d;
a.z/=d;
return a;
}
longd leng(Point3 a){return sqrt(a.x*a.x+a.y*a.y+a.z*a.z);}
Point3 multi(Point3 a,Point3 b)
{
Point3 r;
r.x=a.y*b.z-a.z*b.y;
r.y=a.z*b.x-a.x*b.z;
r.z=a.x*b.y-a.y*b.x;
return r;
}
longd dj(Point3 a,Point3 b)
{
return a.x*b.x+a.y*b.y+a.z*b.z;
}
longd area(Point3 a,Point3 b,Point3 c)
{
longd d1=leng(b-c),d2=leng(c-a),d3=leng(a-b);
longd p=(d1+d2+d3)/2;
longd rs=sqrt(p*(p-d1)*(p-d2)*(p-d3));
return rs;
}
longd V(Point3 a,Point3 b,Point3 c,Point3 d)
{
return dj(multi(a-c,b-c),d-c)/6.0;
}
Point3 p[maxn];
int pp;
Point3 a[maxn];
int aa;
class stPt
{
public:
Point3 pt;
longd mt;
} stpt[maxn];
int operator <(stPt a,stPt b)
{
return a.mt<b.mt;
}
void suant(Point3* a,int aa,Point3 &ht, longd &totv,Point3 pzx)
{
Point3 zx;
zx.x=zx.y=zx.z=0;
int i,j;
for (i=0;i<aa;i++)
zx=zx+a[i];
zx=zx/aa;
for (j=1;j<aa;j++)
if (cwz(leng(multi(a[0]-zx,a[j]-zx)))>0)
break;
for (i=1;i<aa;i++)
{
Point3 xj=multi(a[1]-a[0],a[i]-a[0]);
double l10=leng(a[1]-a[0]);
double li0=leng(a[i]-a[0]);
double l1i=leng(a[i]-a[1]);
stpt[i].pt=a[i];
stpt[i].mt=acos((l10*l10+li0*li0-l1i*l1i)/(2*l10*li0));
if (cwz(dj(xj,multi(a[1]-a[0],a[2]-a[0])))==-1)
stpt[i].mt*=-1;
}
sort(stpt+1,stpt+aa);
for (i=1;i<aa;i++) a[i]=stpt[i].pt;
a[aa]=a[0];
longd thisv=0;
for (i=0;i<aa;i++)
{
longd tiji=fabs(V(a[i],a[i+1],zx,pzx));
thisv+=tiji;
ht=ht+(a[i]+a[i+1]+zx+pzx)*tiji/4;
}
totv+=thisv;
}
longd minds(Point3* p,int n)
{
int i,j,k;
Point3 ht;
ht.x=ht.y=ht.z=0;
longd totv=0;
longd polymindis=-1;
Point3 pzx=p[n-1];
for (i=0;i<n;i++)
for (j=i+1;j<n;j++)
for (k=j+1;k<n;k++)
{
int sg=0;
int t;
aa=0;
for (t=0;t<n;t++)
{
longd tj=V(p[i],p[j],p[k],p[t]);
if (sg==0) sg=cwz(tj);
if (cwz(tj)==0&&t!=i&&t!=j&&t!=k&&t<k)
break;
if (cwz(tj)*cwz(sg)==-1)
break;
if (cwz(tj)==0)
a[aa++]=p[t];
}
if (t>=n)
{
suant(a,aa,ht,totv,pzx);
}
}
ht=ht/totv;
for (i=0;i<n;i++)
for (j=i+1;j<n;j++)
for (k=j+1;k<n;k++)
{
int sg=0;
int t;
aa=0;
for (t=0;t<n;t++)
{
longd tj=V(p[i],p[j],p[k],p[t]);
if (sg==0) sg=cwz(tj);
if (cwz(tj)==0&&t!=i&&t!=j&&t!=k&&t<k)
break;
if (cwz(tj)*cwz(sg)==-1)
break;
}
if (t>=n)
{
longd ds=fabs(V(p[i],p[j],p[k],ht))*3.0/area(p[i],p[j],p[k]);
if (polymindis<0||polymindis>ds)
polymindis=ds;
}
}
return polymindis;
}
int main()
{
freopen("ti.in","r",stdin);
while ( scanf("%d",&pp)!=EOF)
{
int i;
for (i=0;i<pp;i++)
p[i].iin();
longd dis1=minds(p,pp);
printf("%.3lf\n",dis1);
}
return 0;
}