diff --git a/python/semantic_kernel/connectors/ai/anthropic/services/anthropic_chat_completion.py b/python/semantic_kernel/connectors/ai/anthropic/services/anthropic_chat_completion.py
index f8490edba2cd..87e967184234 100644
--- a/python/semantic_kernel/connectors/ai/anthropic/services/anthropic_chat_completion.py
+++ b/python/semantic_kernel/connectors/ai/anthropic/services/anthropic_chat_completion.py
@@ -3,7 +3,7 @@
import json
import logging
import sys
-from collections.abc import AsyncGenerator
+from collections.abc import AsyncGenerator, Callable
from typing import Any, ClassVar
if sys.version_info >= (3, 12):
@@ -26,7 +26,10 @@
from semantic_kernel.connectors.ai.anthropic.prompt_execution_settings.anthropic_prompt_execution_settings import (
AnthropicChatPromptExecutionSettings,
)
-from semantic_kernel.connectors.ai.anthropic.services.utils import MESSAGE_CONVERTERS
+from semantic_kernel.connectors.ai.anthropic.services.utils import (
+ MESSAGE_CONVERTERS,
+ update_settings_from_function_call_configuration,
+)
from semantic_kernel.connectors.ai.anthropic.settings.anthropic_settings import AnthropicSettings
from semantic_kernel.connectors.ai.chat_completion_client_base import ChatCompletionClientBase
from semantic_kernel.connectors.ai.function_call_choice_configuration import FunctionCallChoiceConfiguration
@@ -43,10 +46,10 @@
from semantic_kernel.contents.utils.finish_reason import FinishReason as SemanticKernelFinishReason
from semantic_kernel.exceptions.service_exceptions import (
ServiceInitializationError,
+ ServiceInvalidRequestError,
ServiceInvalidResponseError,
ServiceResponseException,
)
-from semantic_kernel.functions.kernel_function_metadata import KernelFunctionMetadata
from semantic_kernel.utils.experimental_decorator import experimental_class
from semantic_kernel.utils.telemetry.model_diagnostics.decorators import (
trace_chat_completion,
@@ -130,6 +133,19 @@ def get_prompt_execution_settings_class(self) -> type["PromptExecutionSettings"]
def service_url(self) -> str | None:
return str(self.async_client.base_url)
+ @override
+ def _update_function_choice_settings_callback(
+ self,
+ ) -> Callable[[FunctionCallChoiceConfiguration, "PromptExecutionSettings", FunctionChoiceType], None]:
+ return update_settings_from_function_call_configuration
+
+ @override
+ def _reset_function_choice_settings(self, settings: "PromptExecutionSettings") -> None:
+ if hasattr(settings, "tool_choice"):
+ settings.tool_choice = None
+ if hasattr(settings, "tools"):
+ settings.tools = None
+
@override
@trace_chat_completion(MODEL_PROVIDER_NAME)
async def _inner_get_chat_message_contents(
@@ -172,6 +188,7 @@ async def _inner_get_streaming_chat_message_contents(
async for message in response:
yield message
+ @override
def _prepare_chat_history_for_request(
self,
chat_history: "ChatHistory",
@@ -195,14 +212,37 @@ def _prepare_chat_history_for_request(
system_message_content = None
system_message_count = 0
formatted_messages: list[dict[str, Any]] = []
- for message in chat_history.messages:
- # Skip system messages after the first one is found
- if message.role == AuthorRole.SYSTEM:
+ for i in range(len(chat_history)):
+ prev_message = chat_history[i - 1] if i > 0 else None
+ curr_message = chat_history[i]
+ if curr_message.role == AuthorRole.SYSTEM:
+ # Skip system messages after the first one is found
if system_message_count == 0:
- system_message_content = message.content
+ system_message_content = curr_message.content
system_message_count += 1
+ elif curr_message.role == AuthorRole.USER or curr_message.role == AuthorRole.ASSISTANT:
+ formatted_messages.append(MESSAGE_CONVERTERS[curr_message.role](curr_message))
+ elif curr_message.role == AuthorRole.TOOL:
+ if prev_message is None:
+ # Under no circumstances should a tool message be the first message in the chat history
+ raise ServiceInvalidRequestError("Tool message found without a preceding message.")
+ if prev_message.role == AuthorRole.USER or prev_message.role == AuthorRole.SYSTEM:
+ # A tool message should not be found after a user or system message
+ # Please NOTE that in SK there are the USER role and the TOOL role, but in Anthropic
+ # the tool messages are considered as USER messages. We are checking against the SK roles.
+ raise ServiceInvalidRequestError("Tool message found after a user or system message.")
+
+ formatted_message = MESSAGE_CONVERTERS[curr_message.role](curr_message)
+ if prev_message.role == AuthorRole.ASSISTANT:
+ # The first tool message after an assistant message should be a new message
+ formatted_messages.append(formatted_message)
+ else:
+ # Append the tool message to the previous tool message.
+ # This indicates that the assistant message requested multiple parallel tool calls.
+ # Anthropic requires that parallel Tool messages are grouped together in a single message.
+ formatted_messages[-1][content_key] += formatted_message[content_key]
else:
- formatted_messages.append(MESSAGE_CONVERTERS[message.role](message))
+ raise ServiceInvalidRequestError(f"Unsupported role in chat history: {curr_message.role}")
if system_message_count > 1:
logger.warning(
@@ -280,50 +320,6 @@ def _create_streaming_chat_message_content(
function_invoke_attempt=function_invoke_attempt,
)
- def update_settings_from_function_call_configuration_anthropic(
- self,
- function_choice_configuration: FunctionCallChoiceConfiguration,
- settings: "PromptExecutionSettings",
- type: "FunctionChoiceType",
- ) -> None:
- """Update the settings from a FunctionChoiceConfiguration."""
- if (
- function_choice_configuration.available_functions
- and hasattr(settings, "tools")
- and hasattr(settings, "tool_choice")
- ):
- settings.tools = [
- self.kernel_function_metadata_to_function_call_format_anthropic(f)
- for f in function_choice_configuration.available_functions
- ]
-
- if (
- settings.function_choice_behavior
- and settings.function_choice_behavior.type_ == FunctionChoiceType.REQUIRED
- ) or type == FunctionChoiceType.REQUIRED:
- settings.tool_choice = {"type": "any"}
- else:
- settings.tool_choice = {"type": type.value}
-
- def kernel_function_metadata_to_function_call_format_anthropic(
- self,
- metadata: KernelFunctionMetadata,
- ) -> dict[str, Any]:
- """Convert the kernel function metadata to function calling format."""
- return {
- "name": metadata.fully_qualified_name,
- "description": metadata.description or "",
- "input_schema": {
- "type": "object",
- "properties": {p.name: p.schema_data for p in metadata.parameters},
- "required": [p.name for p in metadata.parameters if p.is_required],
- },
- }
-
- @override
- def _update_function_choice_settings_callback(self):
- return self.update_settings_from_function_call_configuration_anthropic
-
async def _send_chat_request(self, settings: AnthropicChatPromptExecutionSettings) -> list["ChatMessageContent"]:
"""Send the chat request."""
try:
@@ -389,10 +385,3 @@ def _get_tool_calls_from_message(self, message: Message) -> list[FunctionCallCon
)
return tool_calls
-
- @override
- def _reset_function_choice_settings(self, settings: "PromptExecutionSettings") -> None:
- if hasattr(settings, "tool_choice"):
- settings.tool_choice = None
- if hasattr(settings, "tools"):
- settings.tools = None
diff --git a/python/semantic_kernel/connectors/ai/anthropic/services/utils.py b/python/semantic_kernel/connectors/ai/anthropic/services/utils.py
index 774d93615927..31acecb0468f 100644
--- a/python/semantic_kernel/connectors/ai/anthropic/services/utils.py
+++ b/python/semantic_kernel/connectors/ai/anthropic/services/utils.py
@@ -5,11 +5,15 @@
from collections.abc import Callable, Mapping
from typing import Any
+from semantic_kernel.connectors.ai.function_call_choice_configuration import FunctionCallChoiceConfiguration
+from semantic_kernel.connectors.ai.function_choice_behavior import FunctionChoiceType
+from semantic_kernel.connectors.ai.prompt_execution_settings import PromptExecutionSettings
from semantic_kernel.contents.chat_message_content import ChatMessageContent
from semantic_kernel.contents.function_call_content import FunctionCallContent
from semantic_kernel.contents.function_result_content import FunctionResultContent
from semantic_kernel.contents.text_content import TextContent
from semantic_kernel.contents.utils.author_role import AuthorRole
+from semantic_kernel.functions.kernel_function_metadata import KernelFunctionMetadata
logger: logging.Logger = logging.getLogger(__name__)
@@ -50,29 +54,32 @@ def _format_assistant_message(message: ChatMessageContent) -> dict[str, Any]:
"type": "tool_use",
"id": item.id or "",
"name": item.name or "",
- "input": item.arguments if isinstance(item.arguments, Mapping) else json.loads(item.arguments or ""),
+ "input": item.arguments
+ if isinstance(item.arguments, Mapping)
+ else json.loads(item.arguments)
+ if item.arguments
+ else {},
})
else:
logger.warning(
f"Unsupported item type in Assistant message while formatting chat history for Anthropic: {type(item)}"
)
+ formatted_message: dict[str, Any] = {"role": "assistant", "content": []}
+
+ if message.content:
+ # Only include the text content if it is not empty.
+ # Otherwise, the Anthropic client will throw an error.
+ formatted_message["content"].append({ # type: ignore
+ "type": "text",
+ "text": message.content,
+ })
if tool_calls:
- return {
- "role": "assistant",
- "content": [
- {
- "type": "text",
- "text": message.content,
- },
- *tool_calls,
- ],
- }
+ # Only include the tool calls if there are any.
+ # Otherwise, the Anthropic client will throw an error.
+ formatted_message["content"].extend(tool_calls) # type: ignore
- return {
- "role": "assistant",
- "content": message.content,
- }
+ return formatted_message
def _format_tool_message(message: ChatMessageContent) -> dict[str, Any]:
@@ -108,3 +115,40 @@ def _format_tool_message(message: ChatMessageContent) -> dict[str, Any]:
AuthorRole.ASSISTANT: _format_assistant_message,
AuthorRole.TOOL: _format_tool_message,
}
+
+
+def update_settings_from_function_call_configuration(
+ function_choice_configuration: FunctionCallChoiceConfiguration,
+ settings: PromptExecutionSettings,
+ type: FunctionChoiceType,
+) -> None:
+ """Update the settings from a FunctionChoiceConfiguration."""
+ if (
+ function_choice_configuration.available_functions
+ and hasattr(settings, "tools")
+ and hasattr(settings, "tool_choice")
+ ):
+ settings.tools = [
+ kernel_function_metadata_to_function_call_format(f)
+ for f in function_choice_configuration.available_functions
+ ]
+
+ if (
+ settings.function_choice_behavior and settings.function_choice_behavior.type_ == FunctionChoiceType.REQUIRED
+ ) or type == FunctionChoiceType.REQUIRED:
+ settings.tool_choice = {"type": "any"}
+ else:
+ settings.tool_choice = {"type": type.value}
+
+
+def kernel_function_metadata_to_function_call_format(metadata: KernelFunctionMetadata) -> dict[str, Any]:
+ """Convert the kernel function metadata to function calling format."""
+ return {
+ "name": metadata.fully_qualified_name,
+ "description": metadata.description or "",
+ "input_schema": {
+ "type": "object",
+ "properties": {p.name: p.schema_data for p in metadata.parameters},
+ "required": [p.name for p in metadata.parameters if p.is_required],
+ },
+ }
diff --git a/python/tests/integration/completions/chat_completion_test_base.py b/python/tests/integration/completions/chat_completion_test_base.py
index 61152512ae11..a31882951c9b 100644
--- a/python/tests/integration/completions/chat_completion_test_base.py
+++ b/python/tests/integration/completions/chat_completion_test_base.py
@@ -66,9 +66,7 @@
onnx_setup: bool = is_service_setup_for_testing(
["ONNX_GEN_AI_CHAT_MODEL_FOLDER"], raise_if_not_set=False
) # Tests are optional for ONNX
-anthropic_setup: bool = is_service_setup_for_testing(
- ["ANTHROPIC_API_KEY", "ANTHROPIC_CHAT_MODEL_ID"], raise_if_not_set=False
-) # We don't have an Anthropic deployment
+anthropic_setup: bool = is_service_setup_for_testing(["ANTHROPIC_API_KEY", "ANTHROPIC_CHAT_MODEL_ID"])
# When testing Bedrock, after logging into AWS CLI this has been set, so we can use it to check if the service is setup
bedrock_setup: bool = is_service_setup_for_testing(["AWS_DEFAULT_REGION"], raise_if_not_set=False)
diff --git a/python/tests/unit/connectors/ai/anthropic/conftest.py b/python/tests/unit/connectors/ai/anthropic/conftest.py
new file mode 100644
index 000000000000..dc7d54cae463
--- /dev/null
+++ b/python/tests/unit/connectors/ai/anthropic/conftest.py
@@ -0,0 +1,400 @@
+# Copyright (c) Microsoft. All rights reserved.
+from collections.abc import AsyncGenerator
+from unittest.mock import AsyncMock, MagicMock
+
+import pytest
+from anthropic import AsyncAnthropic
+from anthropic.lib.streaming import TextEvent
+from anthropic.lib.streaming._types import InputJsonEvent
+from anthropic.types import (
+ ContentBlockStopEvent,
+ InputJSONDelta,
+ Message,
+ MessageDeltaUsage,
+ MessageStopEvent,
+ RawContentBlockDeltaEvent,
+ RawContentBlockStartEvent,
+ RawMessageDeltaEvent,
+ RawMessageStartEvent,
+ TextBlock,
+ TextDelta,
+ ToolUseBlock,
+ Usage,
+)
+from anthropic.types.raw_message_delta_event import Delta
+
+from semantic_kernel.connectors.ai.anthropic.prompt_execution_settings.anthropic_prompt_execution_settings import (
+ AnthropicChatPromptExecutionSettings,
+)
+from semantic_kernel.contents.chat_message_content import (
+ ChatMessageContent,
+ FunctionCallContent,
+ FunctionResultContent,
+ TextContent,
+)
+from semantic_kernel.contents.const import ContentTypes
+from semantic_kernel.contents.streaming_chat_message_content import StreamingChatMessageContent, StreamingTextContent
+from semantic_kernel.contents.utils.author_role import AuthorRole
+from semantic_kernel.contents.utils.finish_reason import FinishReason
+
+
+@pytest.fixture
+def mock_tool_calls_message() -> ChatMessageContent:
+ return ChatMessageContent(
+ ai_model_id="claude-3-opus-20240229",
+ metadata={},
+ content_type="message",
+ role=AuthorRole.ASSISTANT,
+ name=None,
+ items=[
+ TextContent(
+ inner_content=None,
+ ai_model_id=None,
+ metadata={},
+ content_type="text",
+ text="",
+ encoding=None,
+ ),
+ FunctionCallContent(
+ inner_content=None,
+ ai_model_id=None,
+ metadata={},
+ content_type=ContentTypes.FUNCTION_CALL_CONTENT,
+ id="test_function_call_content",
+ index=1,
+ name="math-Add",
+ function_name="Add",
+ plugin_name="math",
+ arguments={"input": 3, "amount": 3},
+ ),
+ ],
+ encoding=None,
+ finish_reason=FinishReason.TOOL_CALLS,
+ )
+
+
+@pytest.fixture
+def mock_parallel_tool_calls_message() -> ChatMessageContent:
+ return ChatMessageContent(
+ ai_model_id="claude-3-opus-20240229",
+ metadata={},
+ content_type="message",
+ role=AuthorRole.ASSISTANT,
+ name=None,
+ items=[
+ TextContent(
+ inner_content=None,
+ ai_model_id=None,
+ metadata={},
+ content_type="text",
+ text="",
+ encoding=None,
+ ),
+ FunctionCallContent(
+ inner_content=None,
+ ai_model_id=None,
+ metadata={},
+ content_type=ContentTypes.FUNCTION_CALL_CONTENT,
+ id="test_function_call_content_1",
+ index=1,
+ name="math-Add",
+ function_name="Add",
+ plugin_name="math",
+ arguments={"input": 3, "amount": 3},
+ ),
+ FunctionCallContent(
+ inner_content=None,
+ ai_model_id=None,
+ metadata={},
+ content_type=ContentTypes.FUNCTION_CALL_CONTENT,
+ id="test_function_call_content_2",
+ index=1,
+ name="math-Subtract",
+ function_name="Subtract",
+ plugin_name="math",
+ arguments={"input": 6, "amount": 3},
+ ),
+ ],
+ encoding=None,
+ finish_reason=FinishReason.TOOL_CALLS,
+ )
+
+
+@pytest.fixture
+def mock_streaming_tool_calls_message() -> list:
+ stream_events = [
+ RawMessageStartEvent(
+ message=Message(
+ id="test_message_id",
+ content=[],
+ model="claude-3-opus-20240229",
+ role="assistant",
+ stop_reason=None,
+ stop_sequence=None,
+ type="message",
+ usage=Usage(input_tokens=1720, output_tokens=2),
+ ),
+ type="message_start",
+ ),
+ RawContentBlockStartEvent(content_block=TextBlock(text="", type="text"), index=0, type="content_block_start"),
+ RawContentBlockDeltaEvent(
+ delta=TextDelta(text="", type="text_delta"), index=0, type="content_block_delta"
+ ),
+ TextEvent(type="text", text="", snapshot=""),
+ RawContentBlockDeltaEvent(
+ delta=TextDelta(text="", type="text_delta"), index=0, type="content_block_delta"
+ ),
+ TextEvent(type="text", text="", snapshot=""),
+ ContentBlockStopEvent(
+ index=0, type="content_block_stop", content_block=TextBlock(text="", type="text")
+ ),
+ RawContentBlockStartEvent(
+ content_block=ToolUseBlock(id="test_tool_use_message_id", input={}, name="math-Add", type="tool_use"),
+ index=1,
+ type="content_block_start",
+ ),
+ RawContentBlockDeltaEvent(
+ delta=InputJSONDelta(partial_json='{"input": 3, "amount": 3}', type="input_json_delta"),
+ index=1,
+ type="content_block_delta",
+ ),
+ InputJsonEvent(type="input_json", partial_json='{"input": 3, "amount": 3}', snapshot={"input": 3, "amount": 3}),
+ ContentBlockStopEvent(
+ index=1,
+ type="content_block_stop",
+ content_block=ToolUseBlock(
+ id="test_tool_use_block_id", input={"input": 3, "amount": 3}, name="math-Add", type="tool_use"
+ ),
+ ),
+ RawMessageDeltaEvent(
+ delta=Delta(stop_reason="tool_use", stop_sequence=None),
+ type="message_delta",
+ usage=MessageDeltaUsage(output_tokens=159),
+ ),
+ MessageStopEvent(
+ type="message_stop",
+ message=Message(
+ id="test_message_id",
+ content=[
+ TextBlock(text="", type="text"),
+ ToolUseBlock(
+ id="test_tool_use_block_id", input={"input": 3, "amount": 3}, name="math-Add", type="tool_use"
+ ),
+ ],
+ model="claude-3-opus-20240229",
+ role="assistant",
+ stop_reason="tool_use",
+ stop_sequence=None,
+ type="message",
+ usage=Usage(input_tokens=100, output_tokens=100),
+ ),
+ ),
+ ]
+
+ async def async_generator():
+ for event in stream_events:
+ yield event
+
+ stream_mock = AsyncMock()
+ stream_mock.__aenter__.return_value = async_generator()
+
+ return stream_mock
+
+
+@pytest.fixture
+def mock_tool_call_result_message() -> ChatMessageContent:
+ return ChatMessageContent(
+ inner_content=None,
+ ai_model_id=None,
+ metadata={},
+ content_type="message",
+ role=AuthorRole.TOOL,
+ name=None,
+ items=[
+ FunctionResultContent(
+ id="test_function_call_content",
+ result=6,
+ )
+ ],
+ encoding=None,
+ finish_reason=FinishReason.TOOL_CALLS,
+ )
+
+
+@pytest.fixture
+def mock_parallel_tool_call_result_message() -> ChatMessageContent:
+ return ChatMessageContent(
+ inner_content=None,
+ ai_model_id=None,
+ metadata={},
+ content_type="message",
+ role=AuthorRole.TOOL,
+ name=None,
+ items=[
+ FunctionResultContent(
+ id="test_function_call_content_1",
+ result=6,
+ ),
+ FunctionResultContent(
+ id="test_function_call_content_2",
+ result=3,
+ ),
+ ],
+ encoding=None,
+ finish_reason=FinishReason.TOOL_CALLS,
+ )
+
+
+@pytest.fixture
+def mock_streaming_chat_message_content() -> StreamingChatMessageContent:
+ return StreamingChatMessageContent(
+ choice_index=0,
+ ai_model_id="claude-3-opus-20240229",
+ metadata={},
+ role=AuthorRole.ASSISTANT,
+ name=None,
+ items=[
+ StreamingTextContent(
+ inner_content=None,
+ ai_model_id=None,
+ metadata={},
+ content_type="text",
+ text="",
+ encoding=None,
+ choice_index=0,
+ ),
+ FunctionCallContent(
+ inner_content=None,
+ ai_model_id=None,
+ metadata={},
+ content_type=ContentTypes.FUNCTION_CALL_CONTENT,
+ id="tool_id",
+ index=0,
+ name="math-Add",
+ function_name="Add",
+ plugin_name="math",
+ arguments='{"input": 3, "amount": 3}',
+ ),
+ ],
+ encoding=None,
+ finish_reason=FinishReason.TOOL_CALLS,
+ )
+
+
+@pytest.fixture
+def mock_settings() -> AnthropicChatPromptExecutionSettings:
+ return AnthropicChatPromptExecutionSettings()
+
+
+@pytest.fixture
+def mock_chat_message_response() -> Message:
+ return Message(
+ id="test_message_id",
+ content=[TextBlock(text="Hello, how are you?", type="text")],
+ model="claude-3-opus-20240229",
+ role="assistant",
+ stop_reason="end_turn",
+ stop_sequence=None,
+ type="message",
+ usage=Usage(input_tokens=10, output_tokens=10),
+ )
+
+
+@pytest.fixture
+def mock_streaming_message_response() -> AsyncGenerator:
+ raw_message_start_event = RawMessageStartEvent(
+ message=Message(
+ id="test_message_id",
+ content=[],
+ model="claude-3-opus-20240229",
+ role="assistant",
+ stop_reason=None,
+ stop_sequence=None,
+ type="message",
+ usage=Usage(input_tokens=41, output_tokens=3),
+ ),
+ type="message_start",
+ )
+
+ raw_content_block_start_event = RawContentBlockStartEvent(
+ content_block=TextBlock(text="", type="text"),
+ index=0,
+ type="content_block_start",
+ )
+
+ raw_content_block_delta_event = RawContentBlockDeltaEvent(
+ delta=TextDelta(text="Hello! It", type="text_delta"),
+ index=0,
+ type="content_block_delta",
+ )
+
+ text_event = TextEvent(
+ type="text",
+ text="Hello! It",
+ snapshot="Hello! It",
+ )
+
+ content_block_stop_event = ContentBlockStopEvent(
+ index=0,
+ type="content_block_stop",
+ content_block=TextBlock(text="Hello! It's nice to meet you.", type="text"),
+ )
+
+ raw_message_delta_event = RawMessageDeltaEvent(
+ delta=Delta(stop_reason="end_turn", stop_sequence=None),
+ type="message_delta",
+ usage=MessageDeltaUsage(output_tokens=84),
+ )
+
+ message_stop_event = MessageStopEvent(
+ type="message_stop",
+ message=Message(
+ id="test_message_stop_id",
+ content=[TextBlock(text="Hello! It's nice to meet you.", type="text")],
+ model="claude-3-opus-20240229",
+ role="assistant",
+ stop_reason="end_turn",
+ stop_sequence=None,
+ type="message",
+ usage=Usage(input_tokens=41, output_tokens=84),
+ ),
+ )
+
+ # Combine all mock events into a list
+ stream_events = [
+ raw_message_start_event,
+ raw_content_block_start_event,
+ raw_content_block_delta_event,
+ text_event,
+ content_block_stop_event,
+ raw_message_delta_event,
+ message_stop_event,
+ ]
+
+ async def async_generator():
+ for event in stream_events:
+ yield event
+
+ # Create an AsyncMock for the stream
+ stream_mock = AsyncMock()
+ stream_mock.__aenter__.return_value = async_generator()
+
+ return stream_mock
+
+
+@pytest.fixture
+def mock_anthropic_client_completion(mock_chat_message_response: Message) -> AsyncAnthropic:
+ client = MagicMock(spec=AsyncAnthropic)
+ messages_mock = MagicMock()
+ messages_mock.create = AsyncMock(return_value=mock_chat_message_response)
+ client.messages = messages_mock
+ return client
+
+
+@pytest.fixture
+def mock_anthropic_client_completion_stream(mock_streaming_message_response: AsyncGenerator) -> AsyncAnthropic:
+ client = MagicMock(spec=AsyncAnthropic)
+ messages_mock = MagicMock()
+ messages_mock.stream.return_value = mock_streaming_message_response
+ client.messages = messages_mock
+ return client
diff --git a/python/tests/unit/connectors/ai/anthropic/services/test_anthropic_chat_completion.py b/python/tests/unit/connectors/ai/anthropic/services/test_anthropic_chat_completion.py
index d368dd901c4d..bff83bfe89d6 100644
--- a/python/tests/unit/connectors/ai/anthropic/services/test_anthropic_chat_completion.py
+++ b/python/tests/unit/connectors/ai/anthropic/services/test_anthropic_chat_completion.py
@@ -1,27 +1,9 @@
# Copyright (c) Microsoft. All rights reserved.
-from collections.abc import AsyncGenerator
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from anthropic import AsyncAnthropic
-from anthropic.lib.streaming import TextEvent
-from anthropic.lib.streaming._types import InputJsonEvent
-from anthropic.types import (
- ContentBlockStopEvent,
- InputJSONDelta,
- Message,
- MessageDeltaUsage,
- MessageStopEvent,
- RawContentBlockDeltaEvent,
- RawContentBlockStartEvent,
- RawMessageDeltaEvent,
- RawMessageStartEvent,
- TextBlock,
- TextDelta,
- ToolUseBlock,
- Usage,
-)
-from anthropic.types.raw_message_delta_event import Delta
+from anthropic.types import Message
from semantic_kernel.connectors.ai.anthropic.prompt_execution_settings.anthropic_prompt_execution_settings import (
AnthropicChatPromptExecutionSettings,
@@ -33,406 +15,20 @@
OpenAIChatPromptExecutionSettings,
)
from semantic_kernel.contents.chat_history import ChatHistory
-from semantic_kernel.contents.chat_message_content import (
- ChatMessageContent,
- FunctionCallContent,
- FunctionResultContent,
- TextContent,
-)
-from semantic_kernel.contents.const import ContentTypes
-from semantic_kernel.contents.streaming_chat_message_content import StreamingChatMessageContent, StreamingTextContent
+from semantic_kernel.contents.chat_message_content import ChatMessageContent, FunctionCallContent, TextContent
+from semantic_kernel.contents.streaming_chat_message_content import StreamingChatMessageContent
from semantic_kernel.contents.utils.author_role import AuthorRole
-from semantic_kernel.contents.utils.finish_reason import FinishReason
from semantic_kernel.exceptions import (
ServiceInitializationError,
ServiceInvalidExecutionSettingsError,
ServiceResponseException,
)
-from semantic_kernel.functions.function_result import FunctionResult
+from semantic_kernel.exceptions.service_exceptions import ServiceInvalidRequestError
from semantic_kernel.functions.kernel_arguments import KernelArguments
from semantic_kernel.functions.kernel_function_decorator import kernel_function
-from semantic_kernel.functions.kernel_function_from_method import KernelFunctionMetadata
-from semantic_kernel.functions.kernel_parameter_metadata import KernelParameterMetadata
from semantic_kernel.kernel import Kernel
-@pytest.fixture
-def mock_tool_calls_message() -> ChatMessageContent:
- return ChatMessageContent(
- inner_content=Message(
- id="test_message_id",
- content=[
- TextBlock(text="", type="text"),
- ToolUseBlock(
- id="test_tool_use_blocks",
- input={"input": 3, "amount": 3},
- name="math-Add",
- type="tool_use",
- ),
- ],
- model="claude-3-opus-20240229",
- role="assistant",
- stop_reason="tool_use",
- stop_sequence=None,
- type="message",
- usage=Usage(input_tokens=1720, output_tokens=194),
- ),
- ai_model_id="claude-3-opus-20240229",
- metadata={},
- content_type="message",
- role=AuthorRole.ASSISTANT,
- name=None,
- items=[
- FunctionCallContent(
- inner_content=None,
- ai_model_id=None,
- metadata={},
- content_type=ContentTypes.FUNCTION_CALL_CONTENT,
- id="test_function_call_content",
- index=1,
- name="math-Add",
- function_name="Add",
- plugin_name="math",
- arguments={"input": 3, "amount": 3},
- ),
- TextContent(
- inner_content=None,
- ai_model_id=None,
- metadata={},
- content_type="text",
- text="",
- encoding=None,
- ),
- ],
- encoding=None,
- finish_reason=FinishReason.TOOL_CALLS,
- )
-
-
-@pytest.fixture
-def mock_streaming_tool_calls_message() -> list:
- stream_events = [
- RawMessageStartEvent(
- message=Message(
- id="test_message_id",
- content=[],
- model="claude-3-opus-20240229",
- role="assistant",
- stop_reason=None,
- stop_sequence=None,
- type="message",
- usage=Usage(input_tokens=1720, output_tokens=2),
- ),
- type="message_start",
- ),
- RawContentBlockStartEvent(content_block=TextBlock(text="", type="text"), index=0, type="content_block_start"),
- RawContentBlockDeltaEvent(
- delta=TextDelta(text="", type="text_delta"), index=0, type="content_block_delta"
- ),
- TextEvent(type="text", text="", snapshot=""),
- RawContentBlockDeltaEvent(
- delta=TextDelta(text="", type="text_delta"), index=0, type="content_block_delta"
- ),
- TextEvent(type="text", text="", snapshot=""),
- ContentBlockStopEvent(
- index=0, type="content_block_stop", content_block=TextBlock(text="", type="text")
- ),
- RawContentBlockStartEvent(
- content_block=ToolUseBlock(id="test_tool_use_message_id", input={}, name="math-Add", type="tool_use"),
- index=1,
- type="content_block_start",
- ),
- RawContentBlockDeltaEvent(
- delta=InputJSONDelta(partial_json='{"input": 3, "amount": 3}', type="input_json_delta"),
- index=1,
- type="content_block_delta",
- ),
- InputJsonEvent(type="input_json", partial_json='{"input": 3, "amount": 3}', snapshot={"input": 3, "amount": 3}),
- ContentBlockStopEvent(
- index=1,
- type="content_block_stop",
- content_block=ToolUseBlock(
- id="test_tool_use_block_id", input={"input": 3, "amount": 3}, name="math-Add", type="tool_use"
- ),
- ),
- RawMessageDeltaEvent(
- delta=Delta(stop_reason="tool_use", stop_sequence=None),
- type="message_delta",
- usage=MessageDeltaUsage(output_tokens=159),
- ),
- MessageStopEvent(
- type="message_stop",
- message=Message(
- id="test_message_id",
- content=[
- TextBlock(text="", type="text"),
- ToolUseBlock(
- id="test_tool_use_block_id", input={"input": 3, "amount": 3}, name="math-Add", type="tool_use"
- ),
- ],
- model="claude-3-opus-20240229",
- role="assistant",
- stop_reason="tool_use",
- stop_sequence=None,
- type="message",
- usage=Usage(input_tokens=100, output_tokens=100),
- ),
- ),
- ]
-
- async def async_generator():
- for event in stream_events:
- yield event
-
- stream_mock = AsyncMock()
- stream_mock.__aenter__.return_value = async_generator()
-
- return stream_mock
-
-
-@pytest.fixture
-def mock_tool_call_result_message() -> ChatMessageContent:
- return ChatMessageContent(
- inner_content=None,
- ai_model_id=None,
- metadata={},
- content_type="message",
- role=AuthorRole.TOOL,
- name=None,
- items=[
- FunctionResultContent(
- id="tool_01",
- inner_content=FunctionResult(
- function=KernelFunctionMetadata(
- name="Add",
- plugin_name="math",
- description="Returns the Addition result of the values provided.",
- parameters=[
- KernelParameterMetadata(
- name="input",
- description="the first number to add",
- default_value=None,
- type_="int",
- is_required=True,
- type_object=int,
- schema_data={"type": "integer", "description": "the first number to add"},
- function_schema_include=True,
- ),
- KernelParameterMetadata(
- name="amount",
- description="the second number to add",
- default_value=None,
- type_="int",
- is_required=True,
- type_object=int,
- schema_data={"type": "integer", "description": "the second number to add"},
- function_schema_include=True,
- ),
- ],
- is_prompt=False,
- is_asynchronous=False,
- return_parameter=KernelParameterMetadata(
- name="return",
- description="the output is a number",
- default_value=None,
- type_="int",
- is_required=True,
- type_object=int,
- schema_data={"type": "integer", "description": "the output is a number"},
- function_schema_include=True,
- ),
- additional_properties={},
- ),
- value=6,
- metadata={},
- ),
- value=6,
- )
- ],
- encoding=None,
- finish_reason=FinishReason.TOOL_CALLS,
- )
-
-
-# mock StreamingChatMessageContent
-@pytest.fixture
-def mock_streaming_chat_message_content() -> StreamingChatMessageContent:
- return StreamingChatMessageContent(
- choice_index=0,
- inner_content=[
- RawContentBlockDeltaEvent(
- delta=TextDelta(text="", type="text_delta"), index=0, type="content_block_delta"
- ),
- RawContentBlockDeltaEvent(
- delta=TextDelta(text="", type="text_delta"), index=0, type="content_block_delta"
- ),
- ContentBlockStopEvent(
- index=1,
- type="content_block_stop",
- content_block=ToolUseBlock(
- id="tool_id",
- input={"input": 3, "amount": 3},
- name="math-Add",
- type="tool_use",
- ),
- ),
- RawMessageDeltaEvent(
- delta=Delta(stop_reason="tool_use", stop_sequence=None),
- type="message_delta",
- usage=MessageDeltaUsage(output_tokens=175),
- ),
- ],
- ai_model_id="claude-3-opus-20240229",
- metadata={},
- role=AuthorRole.ASSISTANT,
- name=None,
- items=[
- StreamingTextContent(
- inner_content=None,
- ai_model_id=None,
- metadata={},
- content_type="text",
- text="",
- encoding=None,
- choice_index=0,
- ),
- FunctionCallContent(
- inner_content=None,
- ai_model_id=None,
- metadata={},
- content_type=ContentTypes.FUNCTION_CALL_CONTENT,
- id="tool_id",
- index=0,
- name="math-Add",
- function_name="Add",
- plugin_name="math",
- arguments='{"input": 3, "amount": 3}',
- ),
- ],
- encoding=None,
- finish_reason=FinishReason.TOOL_CALLS,
- )
-
-
-@pytest.fixture
-def mock_settings() -> AnthropicChatPromptExecutionSettings:
- return AnthropicChatPromptExecutionSettings()
-
-
-@pytest.fixture
-def mock_chat_message_response() -> Message:
- return Message(
- id="test_message_id",
- content=[TextBlock(text="Hello, how are you?", type="text")],
- model="claude-3-opus-20240229",
- role="assistant",
- stop_reason="end_turn",
- stop_sequence=None,
- type="message",
- usage=Usage(input_tokens=10, output_tokens=10),
- )
-
-
-@pytest.fixture
-def mock_streaming_message_response() -> AsyncGenerator:
- raw_message_start_event = RawMessageStartEvent(
- message=Message(
- id="test_message_id",
- content=[],
- model="claude-3-opus-20240229",
- role="assistant",
- stop_reason=None,
- stop_sequence=None,
- type="message",
- usage=Usage(input_tokens=41, output_tokens=3),
- ),
- type="message_start",
- )
-
- raw_content_block_start_event = RawContentBlockStartEvent(
- content_block=TextBlock(text="", type="text"),
- index=0,
- type="content_block_start",
- )
-
- raw_content_block_delta_event = RawContentBlockDeltaEvent(
- delta=TextDelta(text="Hello! It", type="text_delta"),
- index=0,
- type="content_block_delta",
- )
-
- text_event = TextEvent(
- type="text",
- text="Hello! It",
- snapshot="Hello! It",
- )
-
- content_block_stop_event = ContentBlockStopEvent(
- index=0,
- type="content_block_stop",
- content_block=TextBlock(text="Hello! It's nice to meet you.", type="text"),
- )
-
- raw_message_delta_event = RawMessageDeltaEvent(
- delta=Delta(stop_reason="end_turn", stop_sequence=None),
- type="message_delta",
- usage=MessageDeltaUsage(output_tokens=84),
- )
-
- message_stop_event = MessageStopEvent(
- type="message_stop",
- message=Message(
- id="test_message_stop_id",
- content=[TextBlock(text="Hello! It's nice to meet you.", type="text")],
- model="claude-3-opus-20240229",
- role="assistant",
- stop_reason="end_turn",
- stop_sequence=None,
- type="message",
- usage=Usage(input_tokens=41, output_tokens=84),
- ),
- )
-
- # Combine all mock events into a list
- stream_events = [
- raw_message_start_event,
- raw_content_block_start_event,
- raw_content_block_delta_event,
- text_event,
- content_block_stop_event,
- raw_message_delta_event,
- message_stop_event,
- ]
-
- async def async_generator():
- for event in stream_events:
- yield event
-
- # Create an AsyncMock for the stream
- stream_mock = AsyncMock()
- stream_mock.__aenter__.return_value = async_generator()
-
- return stream_mock
-
-
-@pytest.fixture
-def mock_anthropic_client_completion(mock_chat_message_response: Message) -> AsyncAnthropic:
- client = MagicMock(spec=AsyncAnthropic)
- messages_mock = MagicMock()
- messages_mock.create = AsyncMock(return_value=mock_chat_message_response)
- client.messages = messages_mock
- return client
-
-
-@pytest.fixture
-def mock_anthropic_client_completion_stream(mock_streaming_message_response: AsyncGenerator) -> AsyncAnthropic:
- client = MagicMock(spec=AsyncAnthropic)
- messages_mock = MagicMock()
- messages_mock.stream.return_value = mock_streaming_message_response
- client.messages = messages_mock
- return client
-
-
async def test_complete_chat_contents(
kernel: Kernel,
mock_settings: AnthropicChatPromptExecutionSettings,
@@ -753,7 +349,7 @@ async def test_prepare_chat_history_for_request_with_system_message(mock_anthrop
assert system_message_content == "System message"
assert remaining_messages == [
{"role": AuthorRole.USER, "content": "User message"},
- {"role": AuthorRole.ASSISTANT, "content": "Assistant message"},
+ {"role": AuthorRole.ASSISTANT, "content": [{"type": "text", "text": "Assistant message"}]},
]
assert not any(msg["role"] == AuthorRole.SYSTEM for msg in remaining_messages)
@@ -780,35 +376,121 @@ async def test_prepare_chat_history_for_request_with_tool_message(
)
assert system_message_content is None
- assert len(remaining_messages) == 3
+ assert remaining_messages == [
+ {"role": AuthorRole.USER, "content": "What is 3+3?"},
+ {
+ "role": AuthorRole.ASSISTANT,
+ "content": [
+ {"type": "text", "text": mock_tool_calls_message.items[0].text},
+ {
+ "type": "tool_use",
+ "id": mock_tool_calls_message.items[1].id,
+ "name": mock_tool_calls_message.items[1].name,
+ "input": mock_tool_calls_message.items[1].arguments,
+ },
+ ],
+ },
+ {
+ "role": AuthorRole.USER,
+ "content": [
+ {
+ "type": "tool_result",
+ "tool_use_id": mock_tool_call_result_message.items[0].id,
+ "content": str(mock_tool_call_result_message.items[0].result),
+ }
+ ],
+ },
+ ]
-async def test_prepare_chat_history_for_request_with_tool_message_streaming(
+async def test_prepare_chat_history_for_request_with_parallel_tool_message(
+ mock_anthropic_client_completion_stream: MagicMock,
+ mock_parallel_tool_calls_message: ChatMessageContent,
+ mock_parallel_tool_call_result_message: ChatMessageContent,
+):
+ chat_history = ChatHistory()
+ chat_history.add_user_message("What is 3+3?")
+ chat_history.add_message(mock_parallel_tool_calls_message)
+ chat_history.add_message(mock_parallel_tool_call_result_message)
+
+ chat_completion_client = AnthropicChatCompletion(
+ ai_model_id="test_model_id",
+ service_id="test",
+ api_key="",
+ async_client=mock_anthropic_client_completion_stream,
+ )
+
+ remaining_messages, system_message_content = chat_completion_client._prepare_chat_history_for_request(
+ chat_history, role_key="role", content_key="content"
+ )
+
+ assert system_message_content is None
+ assert remaining_messages == [
+ {"role": AuthorRole.USER, "content": "What is 3+3?"},
+ {
+ "role": AuthorRole.ASSISTANT,
+ "content": [
+ {"type": "text", "text": mock_parallel_tool_calls_message.items[0].text},
+ *[
+ {
+ "type": "tool_use",
+ "id": function_call_content.id,
+ "name": function_call_content.name,
+ "input": function_call_content.arguments,
+ }
+ for function_call_content in mock_parallel_tool_calls_message.items[1:]
+ ],
+ ],
+ },
+ {
+ "role": AuthorRole.USER,
+ "content": [
+ {
+ "type": "tool_result",
+ "tool_use_id": function_result_content.id,
+ "content": str(function_result_content.result),
+ }
+ for function_result_content in mock_parallel_tool_call_result_message.items
+ ],
+ },
+ ]
+
+
+async def test_prepare_chat_history_for_request_with_tool_message_right_after_user_message(
mock_anthropic_client_completion_stream: MagicMock,
- mock_streaming_chat_message_content: StreamingChatMessageContent,
mock_tool_call_result_message: ChatMessageContent,
):
chat_history = ChatHistory()
chat_history.add_user_message("What is 3+3?")
- chat_history.add_message(mock_streaming_chat_message_content)
chat_history.add_message(mock_tool_call_result_message)
- chat_completion = AnthropicChatCompletion(
+ chat_completion_client = AnthropicChatCompletion(
ai_model_id="test_model_id",
service_id="test",
api_key="",
async_client=mock_anthropic_client_completion_stream,
)
- remaining_messages, system_message_content = chat_completion._prepare_chat_history_for_request(
- chat_history,
- role_key="role",
- content_key="content",
- stream=True,
+ with pytest.raises(ServiceInvalidRequestError, match="Tool message found after a user or system message."):
+ chat_completion_client._prepare_chat_history_for_request(chat_history, role_key="role", content_key="content")
+
+
+async def test_prepare_chat_history_for_request_with_tool_message_as_the_first_message(
+ mock_anthropic_client_completion_stream: MagicMock,
+ mock_tool_call_result_message: ChatMessageContent,
+):
+ chat_history = ChatHistory()
+ chat_history.add_message(mock_tool_call_result_message)
+
+ chat_completion_client = AnthropicChatCompletion(
+ ai_model_id="test_model_id",
+ service_id="test",
+ api_key="",
+ async_client=mock_anthropic_client_completion_stream,
)
- assert system_message_content is None
- assert len(remaining_messages) == 3
+ with pytest.raises(ServiceInvalidRequestError, match="Tool message found without a preceding message."):
+ chat_completion_client._prepare_chat_history_for_request(chat_history, role_key="role", content_key="content")
async def test_send_chat_stream_request_tool_calls(