-
Notifications
You must be signed in to change notification settings - Fork 1
/
PlotOscillations.m
119 lines (98 loc) · 2.9 KB
/
PlotOscillations.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
% Plot polynomial oscillations as a function of Poisson mu
%
% mikael.mieskolainen@cern.ch, 2019
clear; close all;
addpath src
N = 8;
% A.) Maximum Entropy input with tiny noise (REAL POSITIVE)
input = ones(2^N-1,1) + rand(2^N-1,1)*0.05; input = input/sum(input);
% B.) Comb [0...1] (REAL POSITIVE)
%input = linspace(1/(2^N-1),1-1/(2^N-1),2^N-1)'; input = input/sum(input);
%input = flipud(input);
% B.) Comb [-1...1] (REAL)
%input = linspace(1/(2^N-1),1-1/(2^N-1),2^N-1)';
%input = input - 0.5;
%input = flipud(input);
LAMBDA = amat(N);
LAMBDAINV = inv(LAMBDA);
STEPS = 200; % Not too high, otherwise pdf turns into scalar format
mu_values = logspace(-1.5,log10(30),STEPS);
y_values = zeros(length(input),STEPS);
p_values = zeros(length(input),STEPS);
entropy = zeros(1,STEPS);
% Loop over mu-values
for i = 1:length(mu_values)
mu = mu_values(i);
% Forward
y = LAMBDAINV*((exp(-mu*LAMBDA*input) - 1)/(exp(-mu)-1));
y_values(:,i) = y;
% Inverse
p = LAMBDAINV*(log((exp(-mu) - 1)*LAMBDA*input + 1)) / (-mu);
p_values(:,i) = p;
% entropy(i) = -sum(y(:).*log(y(:)));
end
% loop over the to choose where y(end) ~ 0.65
target = 0.65;
min_ind = -1;
min_val = inf;
for j = 1:size(y_values,2)
diff = abs( y_values(end,j) - target);
if (diff < min_val)
min_val = diff;
min_ind = j;
end
end
optim = y_values(:,min_ind);
f1 = figure;
plot(mu_values, y_values); hold on;
%plot(mu_values, entropy, 'k--');
xlabel('$\mu$','interpreter','latex');
ylabel('$\mathbf{y}$','interpreter','latex');
set(gca,'yscale','log');
set(gca,'xscale','log');
axis square; axis tight;
legends = {};
for c = 1:length(y)
legends{end+1} = sprintf('$y_{%d}$',c);
end
%legends{end+1} = sprintf('$H(y)$');
if (N <= 4)
l = legend(legends);
set(l,'interpreter','latex', 'location','northwest');
legend('boxoff');
end
f2 = figure;
plot(mu_values, zeros(length(mu_values),1), 'k-.'); hold on; % Horizontal axis
plot(mu_values, p_values); hold on;
xlabel('$\mu$','interpreter','latex');
ylabel('$\mathbf{p}$','interpreter','latex');
%set(gca,'xscale','log');
%set(gca,'yscale','log');
axis tight; axis square;
legends = {};
for c = 1:length(y)
legends{end+1} = sprintf('$p_{%d}$',c);
end
% Create smaller axes in top right, and plot on it
%{
% Restart color indexing
axes('Position',[0.28 0.60 .3 .3]); % x y
range = 0.9;
plot(mu_values(1:round(length(mu_values)*range)), p_values(:,(1:round(length(mu_values)*range))) );
axis([0,7, -0.015,0.04]); set (gca,'xscale','log');
set(gca,'ytick',[])
ax = gca;
ax.ColorOrderIndex = 1;
%}
%axis tight; box on;
if (N <= 4)
l = legend({[], legends});
set(l,'interpreter','latex', 'location','southwest');
legend('boxoff');
end
axis([0 8 -0.03 0.08]);
set(gca,'XTick', 0:1:8);
%set(gca,'fontsize',11);
filename = sprintf('../figs/oscillations.pdf');
print(f2, filename, '-dpdf');
system(sprintf('pdfcrop --margins 10 %s %s', filename, filename));