-
Notifications
You must be signed in to change notification settings - Fork 15
/
FCN.py
343 lines (277 loc) · 11.9 KB
/
FCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from __future__ import print_function
import function_definitions as fd
import BatchDatsetReader as DataSetReader
import read_10k_data as fashion_parsing
import read_CFPD_data as ClothingParsing
import read_LIP_data as HumanParsing
import TensorflowUtils as Utils
import numpy as np
import tensorflow as tf
# Hide the warning messages about CPU/GPU
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
DATA_SET = "10k"
# DATA_SET = "CFPD"
# DATA_SET = "LIP"
FLAGS = tf.flags.FLAGS
if DATA_SET == "10k":
tf.flags.DEFINE_integer("batch_size", "2", "batch size for training")
tf.flags.DEFINE_integer(
"training_epochs",
"50",
"number of epochs for training")
tf.flags.DEFINE_string("logs_dir", "logs/FCN_10k/",
"path to logs directory")
tf.flags.DEFINE_string(
"data_dir", "D:/Datasets/Dressup10k/", "path to dataset")
if DATA_SET == "CFPD":
tf.flags.DEFINE_integer("batch_size", "110", "batch size for training")
tf.flags.DEFINE_integer(
"training_epochs",
"300",
"number of epochs for training")
tf.flags.DEFINE_string("logs_dir", "logs/FCN_CFPD/",
"path to logs directory")
tf.flags.DEFINE_string(
"data_dir", "D:/Datasets/CFPD/", "path to dataset")
if DATA_SET == "LIP":
tf.flags.DEFINE_integer("batch_size", "112", "batch size for training")
tf.flags.DEFINE_integer(
"training_epochs",
"30",
"number of epochs for training")
tf.flags.DEFINE_string("logs_dir", "logs/FCN_LIP/",
"path to logs directory")
tf.flags.DEFINE_string(
"data_dir", "D:/Datasets/LIP/", "path to dataset")
tf.flags.DEFINE_float(
"learning_rate",
"1e-4",
"Learning rate for Adam Optimizer")
tf.flags.DEFINE_string("model_dir", "Model_zoo/", "Path to vgg model mat")
tf.flags.DEFINE_bool('debug', "False", "Debug mode: True/ False")
tf.flags.DEFINE_string('mode', "train", "Mode train/ test/ visualize")
# tf.flags.DEFINE_string('mode', "test", "Mode train/ test/ visualize")
# tf.flags.DEFINE_string('mode', "visualize", "Mode train/ test/ visualize")
MODEL_URL = 'http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat'
MAX_ITERATION = int(1e5 + 1001)
NUM_OF_CLASSES = 18 # Upper-lower cloth parsing # Dressup 10k
if DATA_SET == "CFPD":
NUM_OF_CLASSES = 23 # Fashion parsing 23 # CFPD
if DATA_SET == "LIP":
NUM_OF_CLASSES = 20 # human parsing # LIP
IMAGE_SIZE = 224
DISPLAY_STEP = 300
TEST_DIR = FLAGS.logs_dir + "TestImage/"
VIS_DIR = FLAGS.logs_dir + "VisImage/"
"""
Train, Test
"""
def inference(image, keep_prob):
"""
Semantic segmentation network definition
:param image: input image. Should have values in range 0-255
:param keep_prob:
:return:
"""
# 1. donwload VGG pretrained model from network if not did before
# model_data is dictionary for variables from matlab mat file
print("setting up vgg initialized conv layers ...")
model_data = Utils.get_model_data(FLAGS.model_dir, MODEL_URL)
mean = model_data['normalization'][0][0][0]
mean_pixel = np.mean(mean, axis=(0, 1))
weights = np.squeeze(model_data['layers'])
processed_image = Utils.process_image(image, mean_pixel)
# 2. construct model graph
with tf.variable_scope("inference"):
# 2.1 VGG
image_net = fd.vgg_net(weights, processed_image)
conv_final_layer = image_net["conv5_3"]
#
pool5 = Utils.max_pool_2x2(conv_final_layer)
W6 = Utils.weight_variable([7, 7, 512, 4096], name="W6")
b6 = Utils.bias_variable([4096], name="b6")
conv6 = Utils.conv2d_basic(pool5, W6, b6)
relu6 = tf.nn.relu(conv6, name="relu6")
if FLAGS.debug:
Utils.add_activation_summary(relu6)
relu_dropout6 = tf.nn.dropout(relu6, keep_prob=keep_prob)
W7 = Utils.weight_variable([1, 1, 4096, 4096], name="W7")
b7 = Utils.bias_variable([4096], name="b7")
conv7 = Utils.conv2d_basic(relu_dropout6, W7, b7)
relu7 = tf.nn.relu(conv7, name="relu7")
if FLAGS.debug:
Utils.add_activation_summary(relu7)
relu_dropout7 = tf.nn.dropout(relu7, keep_prob=keep_prob)
W8 = Utils.weight_variable([1, 1, 4096, NUM_OF_CLASSES], name="W8")
b8 = Utils.bias_variable([NUM_OF_CLASSES], name="b8")
conv8 = Utils.conv2d_basic(relu_dropout7, W8, b8)
# annotation_pred1 = tf.argmax(conv8, dimension=3, name="prediction1")
# now to upscale to actual image size
deconv_shape1 = image_net["pool4"].get_shape()
W_t1 = Utils.weight_variable(
[4, 4, deconv_shape1[3].value, NUM_OF_CLASSES], name="W_t1")
b_t1 = Utils.bias_variable([deconv_shape1[3].value], name="b_t1")
conv_t1 = Utils.conv2d_transpose_strided(
conv8, W_t1, b_t1, output_shape=tf.shape(
image_net["pool4"]))
fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1")
deconv_shape2 = image_net["pool3"].get_shape()
W_t2 = Utils.weight_variable(
[4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2")
b_t2 = Utils.bias_variable([deconv_shape2[3].value], name="b_t2")
conv_t2 = Utils.conv2d_transpose_strided(
fuse_1, W_t2, b_t2, output_shape=tf.shape(
image_net["pool3"]))
fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2")
shape = tf.shape(image)
deconv_shape3 = tf.stack(
[shape[0], shape[1], shape[2], NUM_OF_CLASSES])
W_t3 = Utils.weight_variable(
[16, 16, NUM_OF_CLASSES, deconv_shape2[3].value], name="W_t3")
b_t3 = Utils.bias_variable([NUM_OF_CLASSES], name="b_t3")
conv_t3 = Utils.conv2d_transpose_strided(
fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8)
# prob = tf.nn.softmax(conv_t3, axis =3)
annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction")
return tf.expand_dims(annotation_pred, dim=3), conv_t3, image_net
"""inference
optimize with trainable paramters (Check which ones)
loss_val : loss operator (mean(
"""
def train(loss_val, var_list, global_step):
optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate)
grads = optimizer.compute_gradients(loss_val, var_list=var_list)
if FLAGS.debug:
# print(len(var_list))
for grad, var in grads:
Utils.add_gradient_summary(grad, var)
return optimizer.apply_gradients(grads, global_step=global_step)
def main(argv=None):
# 1. input placeholders
keep_probability = tf.placeholder(tf.float32, name="keep_probability")
image = tf.placeholder(
tf.float32,
shape=(
None,
IMAGE_SIZE,
IMAGE_SIZE,
3),
name="input_image")
annotation = tf.placeholder(
tf.int32,
shape=(
None,
IMAGE_SIZE,
IMAGE_SIZE,
1),
name="annotation")
# global_step = tf.Variable(0, trainable=False, name='global_step')
# 2. construct inference network
pred_annotation, logits, net = inference(image, keep_probability)
tf.summary.image("input_image", image, max_outputs=3)
tf.summary.image(
"ground_truth",
tf.cast(
annotation,
tf.uint8),
max_outputs=3)
tf.summary.image(
"pred_annotation",
tf.cast(
pred_annotation,
tf.uint8),
max_outputs=3)
# 3. loss measure
loss = tf.reduce_mean(
(tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits,
labels=tf.squeeze(
annotation,
squeeze_dims=[3]),
name="entropy")))
tf.summary.scalar("entropy", loss)
# 4. optimizing
trainable_var = tf.trainable_variables()
if FLAGS.debug:
for var in trainable_var:
Utils.add_to_regularization_and_summary(var)
train_op = train(loss, trainable_var, net['global_step'])
print("Setting up summary op...")
summary_op = tf.summary.merge_all()
print("Setting up image reader from ", FLAGS.data_dir, "...")
print("data dir:", FLAGS.data_dir)
train_records, valid_records = fashion_parsing.read_dataset(FLAGS.data_dir)
test_records = None
if DATA_SET == "CFPD":
train_records, valid_records, test_records = ClothingParsing.read_dataset(
FLAGS.data_dir)
print("test_records length :", len(test_records))
if DATA_SET == "LIP":
train_records, valid_records = HumanParsing.read_dataset(
FLAGS.data_dir)
print("train_records length :", len(train_records))
print("valid_records length :", len(valid_records))
print("Setting up dataset reader")
train_dataset_reader = None
validation_dataset_reader = None
test_dataset_reader = None
image_options = {'resize': True, 'resize_size': IMAGE_SIZE}
if FLAGS.mode == 'train':
train_dataset_reader = DataSetReader.BatchDatset(
train_records, image_options)
validation_dataset_reader = DataSetReader.BatchDatset(
valid_records, image_options)
if DATA_SET == "CFPD":
test_dataset_reader = DataSetReader.BatchDatset(
test_records, image_options)
if FLAGS.mode == 'visualize':
validation_dataset_reader = DataSetReader.BatchDatset(
valid_records, image_options)
if FLAGS.mode == 'test' or FLAGS.mode == 'crftest' or FLAGS.mode == 'predonly' or FLAGS.mode == "fulltest":
if DATA_SET == "CFPD":
test_dataset_reader = DataSetReader.BatchDatset(
test_records, image_options)
else:
test_dataset_reader = DataSetReader.BatchDatset(
valid_records, image_options)
test_records = valid_records
sess = tf.Session()
print("Setting up Saver...")
saver = tf.train.Saver()
summary_writer = tf.summary.FileWriter(FLAGS.logs_dir, sess.graph)
# 5. parameter setup
# 5.1 init params
sess.run(tf.global_variables_initializer())
# 5.2 restore params if possible
ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print("Model restored...")
# 6. train-mode
if FLAGS.mode == "train":
fd.mode_train(sess, FLAGS, net, train_dataset_reader, validation_dataset_reader, train_records, pred_annotation,
image, annotation, keep_probability, logits, train_op, loss, summary_op, summary_writer, saver,
DISPLAY_STEP)
# test-random-validation-data mode
elif FLAGS.mode == "visualize":
fd.mode_visualize(sess, FLAGS, VIS_DIR, validation_dataset_reader,
pred_annotation, image, annotation, keep_probability, NUM_OF_CLASSES)
# test-full-validation-dataset mode
elif FLAGS.mode == "test": # heejune added
fd.mode_new_test(sess, FLAGS, TEST_DIR, test_dataset_reader, test_records,
pred_annotation, image, annotation, keep_probability, logits, NUM_OF_CLASSES)
# fd.mode_test(sess, FLAGS, TEST_DIR, test_dataset_reader, test_records,
# pred_annotation, image, annotation, keep_probability, logits, NUM_OF_CLASSES)
elif FLAGS.mode == "crftest":
fd.mode_predonly(sess, FLAGS, TEST_DIR, test_dataset_reader, test_records,
pred_annotation, image, annotation, keep_probability, logits, NUM_OF_CLASSES)
elif FLAGS.mode == "predonly":
fd.mode_predonly(sess, FLAGS, TEST_DIR, test_dataset_reader, test_records,
pred_annotation, image, annotation, keep_probability, logits, NUM_OF_CLASSES)
elif FLAGS.mode == "fulltest":
fd.mode_full_test(sess, FLAGS, TEST_DIR, test_dataset_reader, test_records,
pred_annotation, image, annotation, keep_probability, logits, NUM_OF_CLASSES)
sess.close()
if __name__ == "__main__":
tf.app.run()