diff --git a/README.md b/README.md index 5e0474c..7ff0171 100644 --- a/README.md +++ b/README.md @@ -137,7 +137,7 @@ output Find the Max value for a certain column in certain aggregated columns ```python -l = [{"name": "John", "age": "16"}, {"name": "Mike", "age": "19"}, {"name": "Sarah", "age": "21"},{"name":"john","age":"19"}] +l = [{"name": "John", "age": "16"}, {"name": "Mike", "age": "19"}, {"name": "Sarah", "age": "21"},{"name":"John","age":"19"}] from leopards import Max count = Max(l,"age",['name'],dtype=int) ``` @@ -150,7 +150,7 @@ output * If you don't pass the aggregation columns, the maximum will be found across dataset. * You can pass the datatype of the column to convert it on the fly while evaluating ```python -l = [{"name": "John", "age": "16"}, {"name": "Mike", "age": "19"}, {"name": "Sarah", "age": "21"},{"name":"john","age":"19"}] +l = [{"name": "John", "age": "16"}, {"name": "Mike", "age": "19"}, {"name": "Sarah", "age": "21"},{"name":"John","age":"19"}] from leopards import Max m = Max(l,"age",dtype=int) ``` @@ -165,7 +165,7 @@ output Find the Max value for a certain column in certain aggregated columns ```python -l = [{"name": "John", "age": "16"}, {"name": "Mike", "age": "19"}, {"name": "Sarah", "age": "21"},{"name":"john","age":"19"}] +l = [{"name": "John", "age": "16"}, {"name": "Mike", "age": "19"}, {"name": "Sarah", "age": "21"},{"name":"John","age":"19"}] from leopards import Min m = Min(l,"age",['name']) ```