-
Notifications
You must be signed in to change notification settings - Fork 0
/
finegrainedBronson.cpp
931 lines (837 loc) · 27.8 KB
/
finegrainedBronson.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/* Reference: https://stanford-ppl.github.io/website/papers/ppopp207-bronson.pdf */
#include <iostream>
#include <mutex>
#include <cassert>
#include "finegrainedBronson.h"
/********************** Version manipulation constants **********************/
// Grow: Get closer to the root due to rebalancing
// Shrink: Get pushed down away from the root due to rebalancing
// Unlinked: The link between parent and child gets modified/removed
static long Unlinked = 0x1L;
static long Growing = 0x2L;
static long GrowCountIncr = 1L << 3;
static long GrowCountMask = 0xffL << 3;
static long Shrinking = 0x4L;
static long ShrinkCountIncr = 1L << 11;
static long IgnoreGrow = ~(Growing | GrowCountMask);
// Next action for each node
enum Cond : int {NothingRequired, UnlinkRequired, RebalanceRequired};
//************************* Tree constructor **********************************/
NodeFG::NodeFG(int k) : version(0), height(1), key(k), value(INT),
left(nullptr), right(nullptr), parent(nullptr),
nodeLock() {}
/*
* Root holder has no key, whose right child is the root. It allows all mutable
* nodes to have a non-null parent.
*/
// std::numeric_limits<int>::min()
AVLTreeFG::AVLTreeFG() : rootHolder(new NodeFG(-1)) {}
AVLTreeFG::~AVLTreeFG() {
freeTree(rootHolder);
}
void AVLTreeFG::freeTree(volatile NodeFG* node) {
if (node == nullptr) return;
freeTree(node->left);
freeTree(node->right);
delete node;
}
//***************************** Utility functions *****************************/
int compare(int a, int b) {
if (a == b) return 0;
else if (a < b) return -1;
else return 1;
}
/******************** Helper functions for tree operations ********************/
/*
* Return a child of a node based on given direction
* dir = 0: left, dir = 1: right
*/
NodeFG* AVLTreeFG::getChild(NodeFG* node, int dir) {
assert(node != nullptr);
if (dir == 0)
return node->left;
else if (dir == 1)
return node->right;
throw "Invalid child case \n";
return nullptr; // error
}
/*
* Get height of tree
*/
int AVLTreeFG::height(NodeFG* node) const {
if (node == nullptr)
return 0;
return node->height;
}
/*
* Get balance factor of tree
*/
int AVLTreeFG::getBalance(NodeFG* node) const {
if (node == nullptr)
return 0;
return height(node->left) - height(node->right);
}
/*
* A node can be unlinked if it has fewer than two children
* It will be converted to a routing node/marked remove otherwise
*/
bool AVLTreeFG::canUnlink(NodeFG* node) {
return node->left == nullptr || node->right == nullptr;
}
/*
* Return the node with minimum key value in the given tree
*/
NodeFG* AVLTreeFG::minValueNode(NodeFG* node) {
NodeFG* current = node;
while (current->left != nullptr) {
current->left->nodeLock.lock();
current->nodeLock.unlock();
current = current->left;
}
// current node (the successor node to be deleted) acquires a lock at this point
return current;
}
// The following code regarding rebalancing and height fixing was translated
// from the Java version of the original algorithm. As the implementation covers
// some edge cases with rebalancing, we decided to follow the original logic in
// order to perserve correctness
// Reference: https://github.com/nbronson/snaptree
/*
* Return label for a node during fixing interval
*/
int AVLTreeFG::nodeCondition(NodeFG* node) {
NodeFG* left = node->left;
NodeFG* right = node->right;
// Unlinking a routing node (a node that marked removed but only get unlinked
// when they have zero or one child)
if (canUnlink(node) && (node->value == NodeFG::REM)) {
return UnlinkRequired;
}
int height = node->height;
int heightRepaired = 1 + std::max(AVLTreeFG::height(left), AVLTreeFG::height(right));
int balance = getBalance(node);
// In a strict AVL, balance should never exceed 1 or -1
// However, in this given setting, balance at a local point can be affected
// by multiple mutations and gets delayed in fixing
if ((1 < balance) || (balance < -1)) {
return RebalanceRequired;
}
return height == heightRepaired ? NothingRequired : heightRepaired;
}
/*
* Assign repaired height to a node that requires it
*/
NodeFG* AVLTreeFG::fixHeightNoLock(NodeFG* node) {
int condition = nodeCondition(node);
switch(condition){
case RebalanceRequired:
case UnlinkRequired:
return node;
case NothingRequired:
return nullptr;
default:
node->height = condition;
return node->parent;
}
}
/*
* Right rotate subtree rooted at node
*/
NodeFG* AVLTreeFG::rotateRight(NodeFG* parent, NodeFG* node, NodeFG* nL, int hR, int hLL, NodeFG* nLR, int hLR) {
// Basic AVL rotation
NodeFG* nPL = parent->left;
// Reader cannot read from this point due to status change
assert(nL != nullptr);
node->version |= Shrinking;
nL->version |= Growing;
node->left = nLR;
nL->right = node;
// Parent update
if (nPL == node) parent->left = nL;
else parent->right = nL;
nL->parent = parent;
node->parent = nL;
if (nLR != nullptr) nLR->parent = node;
// Height update
int heightRepaired = std::max(hLR, hR) + 1;
node->height = heightRepaired;
nL->height = std::max(hLL, heightRepaired) + 1;
// Version update
nL->version += GrowCountIncr;
node->version += ShrinkCountIncr;
// Rebalance nodes at higher up levels
int balanceNodeCheck = hLR - hR;
if (balanceNodeCheck < -1 || 1 < balanceNodeCheck) {
// another rotation
return node;
}
// might need another rotation at new parent (node left)
// now that node has become the right child of left, we need to check the
// balance between the left and right child of left node
int balanceParentCheck = hLL - heightRepaired;
if (balanceParentCheck < -1 || 1 < balanceParentCheck) {
return nL;
}
return fixHeightNoLock(parent);
}
/*
* Left rotate subtree rooted at node
*/
NodeFG* AVLTreeFG::rotateLeft(NodeFG* parent, NodeFG* node, NodeFG* nR, int hL, int hRR, NodeFG* nRL, int hRL) {
assert(nR != nullptr);
node->version |= Shrinking;
nR->version |= Growing;
NodeFG* nPL = parent->left;
node->right = nRL;
nR->left = node;
if (nPL == node) parent->left = nR;
else parent->right = nR;
nR->parent = parent;
node->parent = nR;
if (nRL != nullptr) nRL->parent = node;
int heightRepaired = std::max(hL, hRL) + 1;
node->height = heightRepaired;
nR->height = std::max(hRR, heightRepaired) + 1;
nR->version += GrowCountIncr;
node->version += ShrinkCountIncr;
int balanceNodeCheck = hRL - hL;
if (balanceNodeCheck < -1 || 1 < balanceNodeCheck) {
return node;
}
int balanceParentCheck = hRR - heightRepaired;
if (balanceParentCheck < -1 || 1 < balanceParentCheck) {
return nR;
}
return fixHeightNoLock(parent);
}
/*
* Right-Left rotate subtree rooted at node
*/
NodeFG* AVLTreeFG::rotateRightOverLeft(NodeFG* parent, NodeFG* node, NodeFG* nL, int hR, int hLL, NodeFG* nLR, int hLRL) {
node->version |= Shrinking;
nL->version |= Growing;
NodeFG* nPL = parent->left;
NodeFG* nLRL = nLR->left;
NodeFG* nLRR = nLR->right;
int hLRR = height(nLRR);
node->left = nLRR;
if (nLRR != nullptr) {
nLRR->parent = node;
}
nL->right = nLRL;
if (nLRL != nullptr) {
nLRL->parent = nL;
}
nLR->left = nL;
nL->parent = nLR;
nLR->right = node;
node->parent = nLR;
if (nPL == node) {
parent->left = nLR;
}
else {
parent->right = nLR;
}
nLR->parent = parent;
int heightRepaired = std::max(hLRR, hR) + 1;
node->height = heightRepaired;
int heightLeftRepaired = std::max(hLL, hLRL) + 1;
nL->height = heightLeftRepaired;
nLR->height = 1 + std::max(heightRepaired, heightLeftRepaired);
nL->version += GrowCountIncr;
node->version += ShrinkCountIncr;
int balN = hLRR - hR;
if(balN < -1 || balN > 1){
return node;
}
int balLR = heightLeftRepaired - heightRepaired;
if(balLR < -1 || balLR > 1){
return nLR;
}
return fixHeightNoLock(parent);
}
/*
* Left-Right rotate subtree rooted at node
*/
NodeFG* AVLTreeFG::rotateLeftOverRight(NodeFG* parent, NodeFG* node, NodeFG* nR, int hL, int hRR, NodeFG* nRL, int hRLR) {
assert(nR != nullptr);
node->version |= Shrinking;
nR->version |= Growing;
NodeFG* nPL = parent->left;
NodeFG* nRLL = nRL->left;
NodeFG* nRLR = nRL->right;
int hRLL = height(nRLL);
node->right = nRLL;
if (nRLL != nullptr) {
nRLL->parent = node;
}
nR->left = nRLR;
if (nRLR != nullptr) {
nRLR->parent = nR;
}
nRL->right = nR;
nR->parent = nRL;
nRL->left = node;
node->parent = nRL;
if (nPL == node) {
parent->left = nRL;
}
else {
parent->right = nRL;
}
nRL->parent = parent;
int heightRepaired = std::max(hL, hRLL) + 1;
node->height = heightRepaired;
int heightRightRepaired = std::max(hRLR, hRR) + 1;
nR->height = heightRightRepaired;
nRL->height = std::max(heightRightRepaired, heightRepaired) + 1;
nR->version += GrowCountIncr;
node->version += ShrinkCountIncr;
int balN = hRLL - hL;
if (balN < -1 || balN > 1) {
return node;
}
int balRL = heightRightRepaired - heightRepaired;
if (balRL < -1 || balRL > 1) {
return nRL;
}
return fixHeightNoLock(parent);
}
/*
* Decide rotation cases
*/
NodeFG* AVLTreeFG::rebalanceToRight(NodeFG* parent, NodeFG* node, NodeFG* nL, int hR0) {
nL->nodeLock.lock();
int hL = nL->height;
if (hL - hR0 <= 1) {
return node;
}
else {
NodeFG* nLR = nL->right;
int hLL0 = height(nL->left);
int hLR0 = height(nLR);
if (hLL0 >= hLR0) {
return rotateRight(parent, node, nL, hR0, hLL0, nLR, hLR0);
}
else {
nLR->nodeLock.lock();
int hLR = nLR->height;
if (hLL0 >= hLR) {
return rotateRight(parent, node, nL, hR0, hLL0, nLR, hLR);
}
else {
int hLRL = height(nLR->left);
int b = hLL0 - hLRL;
if (-1 <= b && b <= 1 && !((hLL0 == 0 || hLRL == 0) && nL->version == 0)) {
return rotateRightOverLeft(parent, node, nL, hR0, hLL0, nLR, hLRL);
}
}
nLR->nodeLock.unlock();
}
return rebalanceToLeft(node, nL, nLR, hLL0);
}
nL->nodeLock.unlock();
}
/*
* Decide rotation cases
*/
NodeFG* AVLTreeFG::rebalanceToLeft(NodeFG* parent, NodeFG* node, NodeFG* nR, int hL0) {
nR->nodeLock.lock();
int hR = nR->height;
if (hL0 - hR >= -1) {
return node;
}
else {
NodeFG* nRL = nR->left;
int hRL0 = height(nRL);
int hRR0 = height(nR->right);
if (hRR0 >= hRL0) {
return rotateLeft(parent, node, nR, hL0, hRR0, nRL, hRL0);
}
else {
nRL->nodeLock.lock();
int hRL = height(nRL);
if (hRR0 >= hRL) {
return rotateLeft(parent, node, nR, hL0, hRR0, nRL, hRL);
}
else {
int hRLR = height(nRL->right);
int b = hRR0 - hRLR;
if (-1 <= b && 1 <= b && !((hRR0 == 0 || hRLR == 0) && nR->version == 0)) {
return rotateLeftOverRight(parent, node, nR, hL0, hRR0, nRL, hRLR);
}
}
nRL->nodeLock.unlock();
return rebalanceToRight(node, nR, nRL, hRR0);
}
}
nR->nodeLock.lock();
}
/*
* Fix structural imbalance issues to maintain strict AVL height invariant
*/
NodeFG* AVLTreeFG::rebalanceNoLock(NodeFG* parent, NodeFG* node) {
NodeFG* nL = node->left;
NodeFG* nR = node->right;
// Unlink (delete structurally) a routing node (deleted logically, with "removed" label)
if(canUnlink(node) && (node->value == NodeFG::REM)){
assert(node->parent == parent);
if(attemptUnlinkNoLock(parent, node)){
return fixHeightNoLock(parent);
}
else {
return node;
}
}
int height = node->height;
int hL0 = AVLTreeFG::height(nL);
int hR0 = AVLTreeFG::height(nR);
int heightRepaired = 1 + std::max(hL0, hR0);
int balance = getBalance(node);
if(1 < balance){
return rebalanceToRight(parent, node, nL, hR0);
}
else if(balance < -1){
return rebalanceToLeft(parent, node, nR, hL0);
}
else if(height != heightRepaired) {
// move up to the parent
node->height = heightRepaired;
return fixHeightNoLock(parent);
}
else {
return nullptr;
}
}
/*
* Calculate local height of subtree rooted at node and rebalance to maintain
* relaxed height invariant
* The fix begins at error node, propagates up to the root, and stops when no
* action required
*/
void AVLTreeFG::fixHeightAndRebalance(NodeFG* node) {
// Performance would be impacted if these reads of height require locks
// If one thread fails to repair correctly, there must be a case when
// the fild is accesse by only one thread thus being atomic
// Therfore, we don't need to use locks or optimistic retry here
while (node != nullptr && node->parent != nullptr) {
int condition = nodeCondition(node);
// No further action needed
if (condition == NothingRequired || (node->version == Unlinked)) {
return;
}
// Fix height
if ((condition != UnlinkRequired) && (condition != RebalanceRequired)) {
node->nodeLock.lock();
// Propagate up to parent once finished
node = fixHeightNoLock(node);
node->nodeLock.unlock();
}
else {
// Rotation needed
NodeFG* parent = node->parent;
parent->nodeLock.lock();
if ((parent->version != Unlinked) && (node->parent == parent)) {
node->nodeLock.lock();
// Propagate up to parent once finished
node = rebalanceNoLock(parent, node);
node->nodeLock.unlock();
}
parent->nodeLock.unlock();
// Retry here
}
}
}
/*
* Make a certain thread block until the change bit is not set
*/
static int spinCount = 100;
void AVLTreeFG::waitUntilNotChanging(NodeFG* node) {
long v = node->version;
if ((v & (Growing | Shrinking)) != 0) {
int i = 0;
while ((node->version) == v && i < spinCount) {
i++;
if (v != node->version) {
return;
}
}
if (i == spinCount) {
node->nodeLock.lock();
node->nodeLock.unlock();
}
}
return;
}
/* Main operations: get, insert, delete */
/*
* Public search function that wraps the helper
* Start searching from the root of the tree and traverse down until either the
* key is found or we reach null
*/
bool AVLTreeFG::search(int key) {
while (true) {
// Note: actual root is the right child of rootHolder by definition
NodeFG* root = getChild(rootHolder, 1);
// Not found
if (root == nullptr) {
return false;
}
else {
int dirNext = compare(key, root->key);
// Found
if (dirNext == 0) {
return true;
}
long rootV = root->version;
if ((rootV & Shrinking) != 0 || (rootV != Unlinked)) {
waitUntilNotChanging(root);
}
// Check linking is still valid
else if (root == rootHolder->right) {
AVLTreeFG::Status s = attemptSearch(key, root, dirNext, rootV);
if (s == AVLTreeFG::SUCCESS) {
return true;
}
else if (s == AVLTreeFG::FAILURE) {
return false;
}
// Retry here otherwise
}
}
}
throw "Invalid behavior in search! \n";
return false;
}
/*
* Attempt a search of a key with hand-over-hand optimistic concurrency control
* Return either a rollback signal, or found/not found boolean
*/
AVLTreeFG::Status AVLTreeFG::attemptSearch(int key, NodeFG* node, int dir, long nodeV) {
while(true) {
NodeFG* child = getChild(node, dir);
// Check valid read of parent node
// Growing the subtree with this node does not affect the correctness
// of the current search
if (((node->version ^ nodeV) & IgnoreGrow) != 0)
return AVLTreeFG::RETRY;
// Target is not in the tree
if (child == nullptr)
return AVLTreeFG::FAILURE;
// Target is found
int dirNext = compare(key, child->key);
if (dirNext == 0) {
if (child->value == NodeFG::REM) {
// printf("Found a removed node \n");
return AVLTreeFG::FAILURE;
}
return AVLTreeFG::SUCCESS;
}
// At time t1: Issue a read
// Read the associated version number v1 and block until the change bit is not set
long childV = child->version;
if ((childV & Shrinking) != 0) {
waitUntilNotChanging(child);
// Retry when blocking finishes
}
// Check if the link from parent to child is not modified
// A search might become invalid if the subtree contains the key has
// been changed (shrink, grow, etc.)
else if (childV != Unlinked && (child == getChild(node, dir))) {
// At time t2: Validation
// If version stays the same, read is valid
if (((node->version ^ nodeV) & IgnoreGrow) != 0) {
return AVLTreeFG::RETRY;
}
// Commit
AVLTreeFG::Status p = attemptSearch(key, child, dirNext, childV);
// Read is successful
if (p != AVLTreeFG::RETRY)
return p;
}
}
}
/*
* Public insert function that wraps the helper
*/
bool AVLTreeFG::insert(int key) {
while (true) {
NodeFG* root = getChild(rootHolder, 1);
// Insert into null root
if (root == nullptr) {
rootHolder->nodeLock.lock();
rootHolder->right = new NodeFG(key);
rootHolder->height = 2;
rootHolder->nodeLock.unlock();
return true;
}
else {
int dirNext = compare(key, root->key);
// Ignore case of updating existing key
if (dirNext == 0) {
return false;
}
long rootV = root->version;
if ((rootV & Shrinking) != 0 || (rootV != Unlinked)) {
waitUntilNotChanging(root);
}
// Check linking is still valid
else if (root == rootHolder->right) {
AVLTreeFG::Status s = attemptInsert(key, root, dirNext, rootV);
if (s == AVLTreeFG::SUCCESS) {
return true;
}
else if (s == AVLTreeFG::FAILURE) {
return false;
}
// Retry here otherwise
}
}
}
throw "Invalid behavior in insert! \n";
return false;
}
/*
* Attempt an insert of a key with optimistic concurrency control
* Only account for insertion of new key, not update of existing key
* Return either a rollback signal, or found/not found boolean
*/
AVLTreeFG::Status AVLTreeFG::attemptInsert(int key, NodeFG* node, int dir, long nodeV) {
AVLTreeFG::Status p = AVLTreeFG::RETRY;
while (p == AVLTreeFG::RETRY) {
NodeFG* child = getChild(node, dir);
// Validation of parent link
if (((node->version ^ nodeV) & IgnoreGrow) != 0) {
return AVLTreeFG::RETRY;
}
// Location of parent of the leaf node where new value will be inserted
if (child == nullptr) {
p = attemptInsertHelper(key, node, dir, nodeV);
}
else {
int dirNext = compare(key, child->key);
// Node with key exists in tree
if (dirNext == 0) {
// Ignore this update case
return AVLTreeFG::FAILURE;
}
else {
long childV = child->version;
// Child is being pushed down
if ((childV & Shrinking) != 0) {
waitUntilNotChanging(child);
// Retry when blocking finishes
}
// Child is still in the tree
else if (childV != Unlinked && child == getChild(node, dir)) {
if (((node->version ^ nodeV) & IgnoreGrow) != 0) {
return AVLTreeFG::RETRY;
}
p = attemptInsert(key, child, dirNext, childV);
}
}
}
}
return p;
}
/*
* To safely insert a node into the tree, we must acquire a lock on the future parent
* of the new leaf, and we must also guarantee that no other inserting thread may
* decide ot perform an insertion of the same key into a different parent.\
*/
AVLTreeFG::Status AVLTreeFG::attemptInsertHelper(int key, NodeFG* node, int dir, long nodeV) {
// Synchronized atomic region
node->nodeLock.lock();
// 1. Check if the child link is null after acquiring the parent lock.
// 2. Any rotation that could change the parent into which k should
// be inserted will invalidate the implicit range of the traversal arrived
// at the parent
if (((node->version ^ nodeV) & IgnoreGrow) != 0 || getChild(node, dir) != nullptr)
return AVLTreeFG::RETRY;
// Create new node at child pointer
NodeFG* child = getChild(node, dir);
child = new NodeFG(key);
child->parent = node;
node->nodeLock.unlock();
fixHeightAndRebalance(node);
return AVLTreeFG::SUCCESS;
}
/*
* Public delete function that wraps the helper
*/
bool AVLTreeFG::deleteNode(int key) {
while (true) {
NodeFG* root = getChild(rootHolder, 1);
// Insert into null root
if (root == nullptr) {
printf("Delete from empty tree! \n");
return false;
}
else {
int dirNext = compare(key, root->key);
// Found node to be deleted
if (dirNext == 0) {
if(attemptRemoveNode(rootHolder, root) == AVLTreeFG::SUCCESS) {
return true;
}
else {
return false;
}
}
long rootV = root->version;
if ((rootV & Shrinking) != 0 || (rootV != Unlinked)) {
waitUntilNotChanging(root);
}
// Check linking is still valid
else if (root == rootHolder->right) {
AVLTreeFG::Status s = attemptDeleteNode(key, root, dirNext, rootV);
if (s == AVLTreeFG::SUCCESS) {
return true;
}
else if (s == AVLTreeFG::FAILURE) {
return false;
}
// Retry here otherwise
}
}
}
throw "Invalid behavior in delete! \n";
return false;
}
/*
* Attempt delete of a key from a subtree
* Given partially external tree design, node to be deleted will be a leaf node,
* which allows for a fixed number of atomic operations
*/
AVLTreeFG::Status AVLTreeFG::attemptDeleteNode(int key, NodeFG* node, int dir, long nodeV) {
AVLTreeFG::Status p = AVLTreeFG::RETRY;
while (p == AVLTreeFG::RETRY) {
NodeFG* child = getChild(node, dir);
// Validation of parent link
if (((node->version ^ nodeV) & IgnoreGrow) != 0) {
return AVLTreeFG::RETRY;
}
// Key is not found
if (child == nullptr) {
return AVLTreeFG::FAILURE;
}
else {
int dirNext = compare(key, child->key);
// Node with key exists in tree
if (dirNext == 0) {
p = attemptRemoveNode(node, child);
}
else {
long childV = child->version;
// Child is being pushed down
if ((childV & Shrinking) != 0) {
waitUntilNotChanging(child);
// Retry when blocking finishes
}
// Child is still in the tree
else if (childV != Unlinked && child == getChild(node, dir)) {
if (((node->version ^ nodeV) & IgnoreGrow) != 0) {
return AVLTreeFG::RETRY;
}
p = attemptDeleteNode(key, child, dirNext, childV);
}
}
}
}
return AVLTreeFG::FAILURE;
}
/*
* Attempt to unlink a node (delete structurally) from its parent
*/
bool AVLTreeFG::attemptUnlinkNoLock(NodeFG* parent, NodeFG* node){
if((parent->left != node && parent->right != node) || (node->parent != parent)){
return false;
}
NodeFG* child = node->left ? node->left : node->right;
// Zero child
if (parent->left == node) {
parent->left = child;
}
else {
parent->right = child;
}
// One child
if (child != nullptr) {
child->parent = parent;
}
node->version = Unlinked; // Delete node
node->value = NodeFG::REM;
return true;
}
/*
* Deletion of a node falls into two cases:
* (1) unlink/remove node if parent has zero or one child
* (2) made into routing node if parent has two children
*/
AVLTreeFG::Status AVLTreeFG::attemptRemoveNode(NodeFG* parent, NodeFG* node) {
// Check that node is not a routing/removed node
if (node->value == NodeFG::REM) {
printf("Trying to delete removed node \n");
return AVLTreeFG::FAILURE;
}
NodeFG::NodeType prev;
// Check if the route should be unlinked or converted into routing node
if (!canUnlink(node)) {
node->nodeLock.lock();
// Unlinking now becomes possible despite the initial state
// Need to retry because the locks are not enough to perform unlinking
// (acquiring lock of parent as well is needed)
if ((node->version == Unlinked) || canUnlink(node)) {
node->nodeLock.unlock();
return AVLTreeFG::RETRY;
}
// Make routing/marked removed node
prev = node->value;
assert(prev == NodeFG::INT);
node->value = NodeFG::REM;
node->nodeLock.unlock();
}
else {
// Unlinking is possible here
parent->nodeLock.lock();
// Validation again
if ((parent->version == Unlinked) || node->parent != parent || node->version == Unlinked) {
parent->nodeLock.unlock();
return AVLTreeFG::RETRY;
}
// Locks acquired for both parent and child for the unlinking to happen
node->nodeLock.lock();
// Make routing/mark removed node
prev = node->value;
assert(prev == NodeFG::INT);
node->value = NodeFG::REM;
// Verify that unlinking is still possible --> Commit deletion
if (canUnlink(node)) {
attemptUnlinkNoLock(parent, node);
}
// No need to have a rollback here
node->nodeLock.unlock();
parent->nodeLock.unlock();
}
fixHeightAndRebalance(parent);
return AVLTreeFG::SUCCESS;
}
/*
* A utility function to print preorder traversal of the tree.
* The function also prints the height of every node.
*/
void AVLTreeFG::preOrderHelper(NodeFG* node) const {
if (node != nullptr) {
std::cout << node->key << " ";
preOrderHelper(node->left);
preOrderHelper(node->right);
}
}
/*
* Preorder wrapper function
*/
void AVLTreeFG::preOrder() {
std::cout << "preorder\n";
preOrderHelper(rootHolder);
std::cout << "\n";
}