-
Notifications
You must be signed in to change notification settings - Fork 1
/
array_analysis.py
1043 lines (929 loc) · 40.3 KB
/
array_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# ------------------------------------------------------------------
# Filename: array.py
# Purpose: Functions for Array Analysis
# Author: Martin van Driel, Moritz Beyreuther
# Email: driel@geophysik.uni-muenchen.de
#
# Copyright (C) 2010 Martin van Driel, Moritz Beyreuther
# --------------------------------------------------------------------
"""
Functions for Array Analysis
:copyright:
The ObsPy Development Team (devs@obspy.org)
:license:
GNU Lesser General Public License, Version 3
(https://www.gnu.org/copyleft/lesser.html)
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
from future.builtins import * # NOQA
import math
import warnings
import numpy as np
from scipy.integrate import cumtrapz
from obspy.core import Stream
from obspy.signal.headers import clibsignal
from obspy.signal.invsim import cosine_taper
from obspy.signal.util import next_pow_2, util_geo_km
def array_rotation_strain(subarray, ts1, ts2, ts3, vp, vs, array_coords,
sigmau):
r"""
This routine calculates the best-fitting rigid body rotation and
uniform strain as functions of time, and their formal errors, given
three-component ground motion time series recorded on a seismic array.
The theory implemented herein is presented in the papers [Spudich1995]_,
(abbreviated S95 herein) [Spudich2008]_ (SF08) and [Spudich2009]_ (SF09).
This is a translation of the Matlab Code presented in (SF09) with
small changes in details only. Output has been checked to be the same
as the original Matlab Code.
.. note::
ts\_ below means "time series"
:type vp: float
:param vp: P wave speed in the soil under the array (km/s)
:type vs: float
:param vs: S wave speed in the soil under the array Note - vp and vs may be
any unit (e.g. miles/week), and this unit need not be related to the
units of the station coordinates or ground motions, but the units of vp
and vs must be the SAME because only their ratio is used.
:type array_coords: numpy.ndarray
:param array_coords: array of dimension na x 3, where na is the number of
stations in the array. array_coords[i,j], i in arange(na), j in
arange(3) is j coordinate of station i. units of array_coords may be
anything, but see the "Discussion of input and output units" above.
The origin of coordinates is arbitrary and does not affect the
calculated strains and rotations. Stations may be entered in any
order.
:type ts1: numpy.ndarray
:param ts1: array of x1-component seismograms, dimension nt x na.
ts1[j,k], j in arange(nt), k in arange(na) contains the k'th time
sample of the x1 component ground motion at station k. NOTE that the
seismogram in column k must correspond to the station whose coordinates
are in row k of in.array_coords. nt is the number of time samples in
the seismograms. Seismograms may be displacement, velocity,
acceleration, jerk, etc. See the "Discussion of input and output
units" below.
:type ts2: numpy.ndarray
:param ts2: same as ts1, but for the x2 component of motion.
:type ts3: numpy.ndarray
:param ts3: same as ts1, but for the x3 (UP or DOWN) component of motion.
:type sigmau: float or :class:`numpy.ndarray`
:param sigmau: standard deviation (NOT VARIANCE) of ground noise,
corresponds to sigma-sub-u in S95 lines above eqn (A5).
NOTE: This may be entered as a scalar, vector, or matrix!
* If sigmau is a scalar, it will be used for all components of all
stations.
* If sigmau is a 1D array of length na, sigmau[i] will be the noise
assigned to all components of the station corresponding to
array_coords[i,:]
* If sigmau is a 2D array of dimension na x 3, then sigmau[i,j] is
used as the noise of station i, component j.
In all cases, this routine assumes that the noise covariance between
different stations and/or components is zero.
:type subarray: numpy.ndarray
:param subarray: NumPy array of subarray stations to use. I.e. if subarray
= array([1, 4, 10]), then only rows 1, 4, and 10 of array_coords will
be used, and only ground motion time series in the first, fourth, and
tenth columns of ts1 will be used. Nplus1 is the number of elements in
the subarray vector, and N is set to Nplus1 - 1. To use all stations in
the array, set in.subarray = arange(na), where na is the total number
of stations in the array (equal to the number of rows of
in.array_coords. Sequence of stations in the subarray vector is
unimportant; i.e. subarray = array([1, 4, 10]) will yield essentially
the same rotations and strains as subarray = array([10, 4, 1]).
"Essentially" because permuting subarray sequence changes the d vector,
yielding a slightly different numerical result.
:return: Dictionary with fields:
**A:** (array, dimension 3N x 6)
data mapping matrix 'A' of S95(A4)
**g:** (array, dimension 6 x 3N)
generalized inverse matrix relating ptilde and data vector, in
S95(A5)
**ce:** (4 x 4)
covariance matrix of the 4 independent strain tensor elements e11,
e21, e22, e33
**ts_d:** (array, length nt)
dilatation (trace of the 3x3 strain tensor) as a function of time
**sigmad:** (scalar)
standard deviation of dilatation
**ts_dh:** (array, length nt)
horizontal dilatation (also known as areal strain) (eEE+eNN) as a
function of time
**sigmadh:** (scalar)
standard deviation of horizontal dilatation (areal strain)
**ts_e:** (array, dimension nt x 3 x 3)
strain tensor
**ts_s:** (array, length nt)
maximum strain ( .5*(max eigval of e - min eigval of e) as a
function of time, where e is the 3x3 strain tensor
**cgamma:** (4 x 4)
covariance matrix of the 4 independent shear strain tensor elements
g11, g12, g22, g33 (includes full covariance effects). gamma is
traceless part of e.
**ts_sh:** (array, length nt)
maximum horizontal strain ( .5*(max eigval of eh - min eigval of
eh) as a function of time, where eh is e(1:2,1:2)
**cgammah:** (3 x 3)
covariance matrix of the 3 independent horizontal shear strain
tensor elements gamma11, gamma12, gamma22 gamma is traceless part
of e.
**ts_wmag:** (array, length nt)
total rotation angle (radians) as a function of time. I.e. if the
rotation vector at the j'th time step is
w = array([w1, w2, w3]), then ts_wmag[j] = sqrt(sum(w**2))
positive for right-handed rotation
**cw:** (3 x 3)
covariance matrix of the 3 independent rotation tensor elements
w21, w31, w32
**ts_w1:** (array, length nt)
rotation (rad) about the x1 axis, positive for right-handed
rotation
**sigmaw1:** (scalar)
standard deviation of the ts_w1 (sigma-omega-1 in SF08)
**ts_w2:** (array, length nt)
rotation (rad) about the x2 axis, positive for right-handed
rotation
**sigmaw2:** (scalar)
standard deviation of ts_w2 (sigma-omega-2 in SF08)
**ts_w3:** (array, length nt)
"torsion", rotation (rad) about a vertical up or down axis, i.e.
x3, positive for right-handed rotation
**sigmaw3:** (scalar)
standard deviation of the torsion (sigma-omega-3 in SF08)
**ts_tilt:** (array, length nt)
tilt (rad) (rotation about a horizontal axis, positive for right
handed rotation) as a function of time
tilt = sqrt( w1^2 + w2^2)
**sigmat:** (scalar)
standard deviation of the tilt (not defined in SF08, From
Papoulis (1965, p. 195, example 7.8))
**ts_data:** (array, shape (nt x 3N))
time series of the observed displacement differences, which are
the di in S95 eqn A1
**ts_pred:** (array, shape (nt x 3N))
time series of the fitted model's predicted displacement difference
Note that the fitted model displacement differences correspond
to linalg.dot(A, ptilde), where A is the big matrix in S95 eqn A4
and ptilde is S95 eqn A5
**ts_misfit:** (array, shape (nt x 3N))
time series of the residuals (fitted model displacement differences
minus observed displacement differences). Note that the fitted
model displacement differences correspond to linalg.dot(A, ptilde),
where A is the big matrix in S95 eqn A4 and ptilde is S95 eqn A5
**ts_m:** (array, length nt)
Time series of M, misfit ratio of S95, p. 688
**ts_ptilde:** (array, shape (nt x 6))
solution vector p-tilde (from S95 eqn A5) as a function of time
**cp:** (6 x 6)
solution covariance matrix defined in SF08
.. rubric:: Warnings
This routine does not check to verify that your array is small
enough to conform to the assumption that the array aperture is less
than 1/4 of the shortest seismic wavelength in the data. See SF08
for a discussion of this assumption.
This code assumes that ts1[j,:], ts2[j,:], and ts3[j,:] are all sampled
SIMULTANEOUSLY.
.. rubric:: Notes
(1) Note On Specifying Input Array And Selecting Subarrays
This routine allows the user to input the coordinates and ground
motion time series of all stations in a seismic array having na
stations and the user may select for analysis a subarray of Nplus1
<= na stations.
(2) Discussion Of Physical Units Of Input And Output
If the input seismograms are in units of displacement, the output
strains and rotations will be in units of strain (unitless) and
angle (radians). If the input seismograms are in units of
velocity, the output will be strain rate (units = 1/s) and rotation
rate (rad/s). Higher temporal derivative inputs yield higher
temporal derivative outputs.
Input units of the array station coordinates must match the spatial
units of the seismograms. For example, if the input seismograms
are in units of m/s^2, array coordinates must be entered in m.
(3) Note On Coordinate System
This routine assumes x1-x2-x3 is a RIGHT handed orthogonal
coordinate system. x3 must point either UP or DOWN.
"""
# start the code -------------------------------------------------
# This assumes that all stations and components have the same number of
# time samples, nt
[nt, na] = np.shape(ts1)
# check to ensure all components have same duration
if ts1.shape != ts2.shape:
raise ValueError('ts1 and ts2 have different sizes')
if ts1.shape != ts3.shape:
raise ValueError('ts1 and ts3 have different sizes')
# check to verify that the number of stations in ts1 agrees with the number
# of stations in array_coords
[nrac, _ncac] = array_coords.shape
if nrac != na:
msg = 'ts1 has %s columns(stations) but array_coords has ' % na + \
'%s rows(stations)' % nrac
raise ValueError(msg)
# check stations in subarray exist
if min(subarray) < 0:
raise ValueError('Station number < 0 in subarray')
if max(subarray) > na:
raise ValueError('Station number > na in subarray')
# extract the stations of the subarray to be used
subarraycoords = array_coords[subarray, :]
# count number of subarray stations: Nplus1 and number of station
# offsets: N
n_plus_1 = subarray.size
_n = n_plus_1 - 1
if n_plus_1 < 3:
msg = 'The problem is underdetermined for fewer than 3 stations'
raise ValueError(msg)
elif n_plus_1 == 3:
msg = 'For a 3-station array the problem is even-determined'
warnings.warn(msg)
# ------------------- NOW SOME SEISMOLOGY!! --------------------------
# constants
eta = 1 - 2 * vs ** 2 / vp ** 2
# form A matrix, which relates model vector of 6 displacement derivatives
# to vector of observed displacement differences. S95(A3)
# dim(A) = (3*N) * 6
# model vector is [ u1,1 u1,2 u1,3 u2,1 u2,2 u2,3 ] (free surface boundary
# conditions applied, S95(A2))
# first initialize A to the null matrix
_a = np.zeros((_n * 3, 6))
z3t = np.zeros(3)
# fill up A
for i in range(_n):
ss = subarraycoords[(i + 1), :] - subarraycoords[0, :]
_a[(3 * i):(3 * i + 3), :] = np.c_[
np.r_[ss, z3t], np.r_[z3t, ss],
np.array([-eta * ss[2],
0., -ss[0], 0., -eta * ss[2], -ss[1]])].transpose()
# ------------------------------------------------------
# define data covariance matrix cd.
# step 1 - define data differencing matrix D
# dimension of D is (3*N) * (3*Nplus1)
i3 = np.eye(3)
ii = np.eye(3 * _n)
_d = -i3
for i in range(_n - 1):
_d = np.c_[_d, -i3]
_d = np.r_[_d, ii].T
# step 2 - define displacement u covariance matrix Cu
# This assembles a covariance matrix Cu that reflects actual data errors.
# populate Cu depending on the size of sigmau
if np.size(sigmau) == 1:
# sigmau is a scalar. Make all diag elements of Cu the same
cu = sigmau ** 2 * np.eye(3 * n_plus_1)
elif np.shape(sigmau) == (np.size(sigmau),):
# sigmau is a row or column vector
# check dimension is okay
if np.size(sigmau) != na:
raise ValueError('sigmau must have %s elements' % na)
junk = (np.c_[sigmau, sigmau, sigmau]) ** 2 # matrix of variances
cu = np.diag(np.reshape(junk[subarray, :], (3 * n_plus_1)))
elif sigmau.shape == (na, 3):
cu = np.diag(np.reshape(((sigmau[subarray, :]) ** 2).transpose(),
(3 * n_plus_1)))
else:
raise ValueError('sigmau has the wrong dimensions')
# cd is the covariance matrix of the displ differences
# dim(cd) is (3*N) * (3*N)
cd = np.dot(np.dot(_d, cu), _d.T)
# ---------------------------------------------------------
# form generalized inverse matrix g. dim(g) is 6 x (3*N)
cdi = np.linalg.inv(cd)
atcdia = np.dot(np.dot(_a.T, cdi), _a)
g = np.dot(np.dot(np.linalg.inv(atcdia), _a.T), cdi)
condition_number = np.linalg.cond(atcdia)
if condition_number > 100:
msg = 'Condition number is %s' % condition_number
warnings.warn(msg)
# set up storage for vectors that will contain time series
ts_wmag = np.empty(nt)
ts_w1 = np.empty(nt)
ts_w2 = np.empty(nt)
ts_w3 = np.empty(nt)
ts_tilt = np.empty(nt)
ts_dh = np.empty(nt)
ts_sh = np.empty(nt)
ts_s = np.empty(nt)
ts_pred = np.empty((nt, 3 * _n))
ts_misfit = np.empty((nt, 3 * _n))
ts_m = np.empty(nt)
ts_data = np.empty((nt, 3 * _n))
ts_ptilde = np.empty((nt, 6))
for array in (ts_wmag, ts_w1, ts_w2, ts_w3, ts_tilt, ts_dh, ts_sh, ts_s,
ts_pred, ts_misfit, ts_m, ts_data, ts_ptilde):
array.fill(np.NaN)
ts_e = np.empty((nt, 3, 3))
ts_e.fill(np.NaN)
# other matrices
udif = np.empty((3, _n))
udif.fill(np.NaN)
# ---------------------------------------------------------------
# here we define 4x6 be and 3x6 bw matrices. these map the solution
# ptilde to strain or to rotation. These matrices will be used
# in the calculation of the covariances of strain and rotation.
# Columns of both matrices correspond to the model solution vector
# containing elements [u1,1 u1,2 u1,3 u2,1 u2,2 u2,3 ]'
#
# the rows of be correspond to e11 e21 e22 and e33
be = np.zeros((4, 6))
be[0, 0] = 2.
be[1, 1] = 1.
be[1, 3] = 1.
be[2, 4] = 2.
be[3, 0] = -2 * eta
be[3, 4] = -2 * eta
be = be * .5
#
# the rows of bw correspond to w21 w31 and w32
bw = np.zeros((3, 6))
bw[0, 1] = 1.
bw[0, 3] = -1.
bw[1, 2] = 2.
bw[2, 5] = 2.
bw = bw * .5
#
# this is the 4x6 matrix mapping solution to total shear strain gamma
# where gamma = strain - tr(strain)/3 * eye(3)
# the four elements of shear are 11, 12, 22, and 33. It is symmetric.
aa = (2 + eta) / 3
b = (1 - eta) / 3
c = (1 + 2 * eta) / 3
bgamma = np.zeros((4, 6))
bgamma[0, 0] = aa
bgamma[0, 4] = -b
bgamma[2, 2] = .5
bgamma[1, 3] = .5
bgamma[2, 0] = -b
bgamma[2, 4] = aa
bgamma[3, 0] = -c
bgamma[3, 4] = -c
#
# this is the 3x6 matrix mapping solution to horizontal shear strain
# gamma
# the four elements of horiz shear are 11, 12, and 22. It is symmetric.
bgammah = np.zeros((3, 6))
bgammah[0, 0] = .5
bgammah[0, 4] = -.5
bgammah[1, 1] = .5
bgammah[1, 3] = .5
bgammah[2, 0] = -.5
bgammah[2, 4] = .5
# solution covariance matrix. dim(cp) = 6 * 6
# corresponding to solution elements [u1,1 u1,2 u1,3 u2,1 u2,2 u2,3 ]
cp = np.dot(np.dot(g, cd), g.T)
# Covariance of strain tensor elements
# ce should be 4x4, correspond to e11, e21, e22, e33
ce = np.dot(np.dot(be, cp), be.T)
# cw should be 3x3 correspond to w21, w31, w32
cw = np.dot(np.dot(bw, cp), bw.T)
# cgamma is 4x4 correspond to 11, 12, 22, and 33.
cgamma = np.dot(np.dot(bgamma, cp), bgamma.T)
#
# cgammah is 3x3 correspond to 11, 12, and 22
cgammah = np.dot(np.dot(bgammah, cp), bgammah.T)
#
#
# covariance of the horizontal dilatation and the total dilatation
# both are 1x1, i.e. scalars
cdh = cp[0, 0] + 2 * cp[0, 4] + cp[4, 4]
sigmadh = np.sqrt(cdh)
# covariance of the (total) dilatation, ts_dd
sigmadsq = (1 - eta) ** 2 * cdh
sigmad = np.sqrt(sigmadsq)
#
# cw3, covariance of w3 rotation, i.e. torsion, is 1x1, i.e. scalar
cw3 = (cp[1, 1] - 2 * cp[1, 3] + cp[3, 3]) / 4
sigmaw3 = np.sqrt(cw3)
# For tilt cannot use same approach because tilt is not a linear function
# of the solution. Here is an approximation :
# For tilt use conservative estimate from
# Papoulis (1965, p. 195, example 7.8)
sigmaw1 = np.sqrt(cp[5, 5])
sigmaw2 = np.sqrt(cp[2, 2])
sigmat = max(sigmaw1, sigmaw2) * np.sqrt(2 - np.pi / 2)
#
# BEGIN LOOP OVER DATA POINTS IN TIME SERIES==============================
#
for itime in range(nt):
#
# data vector is differences of stn i displ from stn 1 displ
# sum the lengths of the displ difference vectors
sumlen = 0
for i in range(_n):
udif[0, i] = ts1[itime, subarray[i + 1]] - ts1[itime, subarray[0]]
udif[1, i] = ts2[itime, subarray[i + 1]] - ts2[itime, subarray[0]]
udif[2, i] = ts3[itime, subarray[i + 1]] - ts3[itime, subarray[0]]
sumlen = sumlen + np.sqrt(np.sum(udif[:, i].T ** 2))
data = udif.T.reshape(udif.size)
#
# form solution
# ptilde is (u1,1 u1,2 u1,3 u2,1 u2,2 u2,3).T
ptilde = np.dot(g, data)
#
# place in uij_vector the full 9 elements of the displacement gradients
# uij_vector is (u1,1 u1,2 u1,3 u2,1 u2,2 u2,3 u3,1 u3,2 u3,3).T
# The following implements the free surface boundary condition
u31 = -ptilde[2]
u32 = -ptilde[5]
u33 = -eta * (ptilde[0] + ptilde[4])
uij_vector = np.r_[ptilde, u31, u32, u33]
#
# calculate predicted data
pred = np.dot(_a, ptilde) # 9/8/92.I.3(9) and 8/26/92.I.3.T bottom
#
# calculate residuals (misfits concatenated for all stations)
misfit = pred - data
# Calculate ts_m, misfit ratio.
# calculate summed length of misfits (residual displacements)
misfit_sq = misfit ** 2
misfit_sq = np.reshape(misfit_sq, (_n, 3)).T
misfit_sumsq = np.empty(_n)
misfit_sumsq.fill(np.NaN)
for i in range(_n):
misfit_sumsq[i] = misfit_sq[:, i].sum()
misfit_len = np.sum(np.sqrt(misfit_sumsq))
ts_m[itime] = misfit_len / sumlen
#
ts_data[itime, 0:3 * _n] = data.T
ts_pred[itime, 0:3 * _n] = pred.T
ts_misfit[itime, 0:3 * _n] = misfit.T
ts_ptilde[itime, :] = ptilde.T
#
# ---------------------------------------------------------------
# populate the displacement gradient matrix _u
_u = np.zeros(9)
_u[:] = uij_vector
_u = _u.reshape((3, 3))
#
# calculate strain tensors
# Fung eqn 5.1 p 97 gives dui = (eij-wij)*dxj
e = .5 * (_u + _u.T)
ts_e[itime] = e
# Three components of the rotation vector omega (=w here)
w = np.empty(3)
w.fill(np.NaN)
w[0] = -ptilde[5]
w[1] = ptilde[2]
w[2] = .5 * (ptilde[3] - ptilde[1])
# amount of total rotation is length of rotation vector
ts_wmag[itime] = np.sqrt(np.sum(w ** 2))
#
# Calculate tilt and torsion
ts_w1[itime] = w[0]
ts_w2[itime] = w[1]
ts_w3[itime] = w[2] # torsion in radians
ts_tilt[itime] = np.sqrt(w[0] ** 2 + w[1] ** 2)
# 7/21/06.ii.6(19), amount of tilt in radians
# ---------------------------------------------------------------
#
# Here I calculate horizontal quantities only
# ts_dh is horizontal dilatation (+ --> expansion).
# Total dilatation, ts_dd, will be calculated outside the time
# step loop.
#
ts_dh[itime] = e[0, 0] + e[1, 1]
#
# find maximum shear strain in horizontal plane, and find its azimuth
eh = np.r_[np.c_[e[0, 0], e[0, 1]], np.c_[e[1, 0], e[1, 1]]]
# 7/21/06.ii.2(4)
gammah = eh - np.trace(eh) * np.eye(2) / 2.
# 9/14/92.ii.4, 7/21/06.ii.2(5)
# eigvecs are principal axes, eigvals are principal strains
[eigvals, _eigvecs] = np.linalg.eig(gammah)
# max shear strain, from Fung (1965, p71, eqn (8)
ts_sh[itime] = .5 * (max(eigvals) - min(eigvals))
# calculate max of total shear strain, not just horizontal strain
# eigvecs are principal axes, eigvals are principal strains
[eigvalt, _eigvect] = np.linalg.eig(e)
# max shear strain, from Fung (1965, p71, eqn (8)
ts_s[itime] = .5 * (max(eigvalt) - min(eigvalt))
#
# =========================================================================
#
# (total) dilatation is a scalar times horizontal dilatation owing to there
# free surface boundary condition
ts_d = ts_dh * (1 - eta)
# load output structure
out = dict()
out['A'] = _a
out['g'] = g
out['ce'] = ce
out['ts_d'] = ts_d
out['sigmad'] = sigmad
out['ts_dh'] = ts_dh
out['sigmadh'] = sigmadh
out['ts_s'] = ts_s
out['cgamma'] = cgamma
out['ts_sh'] = ts_sh
out['cgammah'] = cgammah
out['ts_wmag'] = ts_wmag
out['cw'] = cw
out['ts_w1'] = ts_w1
out['sigmaw1'] = sigmaw1
out['ts_w2'] = ts_w2
out['sigmaw2'] = sigmaw2
out['ts_w3'] = ts_w3
out['sigmaw3'] = sigmaw3
out['ts_tilt'] = ts_tilt
out['sigmat'] = sigmat
out['ts_data'] = ts_data
out['ts_pred'] = ts_pred
out['ts_misfit'] = ts_misfit
out['ts_m'] = ts_m
out['ts_e'] = ts_e
out['ts_ptilde'] = ts_ptilde
out['cp'] = cp
out['ts_m'] = ts_m
return out
def get_geometry(stream, coordsys='lonlat', return_center=False,
verbose=False):
"""
Method to calculate the array geometry and the center coordinates in km
:param stream: Stream object, the trace.stats dict like class must
contain an :class:`~obspy.core.util.attribdict.AttribDict` with
'latitude', 'longitude' (in degrees) and 'elevation' (in km), or 'x',
'y', 'elevation' (in km) items/attributes. See param ``coordsys``
:param coordsys: valid values: 'lonlat' and 'xy', choose which stream
attributes to use for coordinates
:param return_center: Returns the center coordinates as extra tuple
:return: Returns the geometry of the stations as 2d :class:`numpy.ndarray`
The first dimension are the station indexes with the same order
as the traces in the stream object. The second index are the
values of [lat, lon, elev] in km
last index contains center [lat, lon, elev] in degrees and km if
return_center is true
"""
nstat = len(stream)
center_lat = 0.
center_lon = 0.
center_h = 0.
geometry = np.empty((nstat, 3))
if isinstance(stream, Stream):
for i, tr in enumerate(stream):
if coordsys == 'lonlat':
geometry[i, 0] = tr.stats.coordinates.longitude
geometry[i, 1] = tr.stats.coordinates.latitude
geometry[i, 2] = tr.stats.coordinates.elevation
elif coordsys == 'xy':
geometry[i, 0] = tr.stats.coordinates.x
geometry[i, 1] = tr.stats.coordinates.y
geometry[i, 2] = tr.stats.coordinates.elevation
elif isinstance(stream, np.ndarray):
geometry = stream.copy()
else:
raise TypeError('only Stream or numpy.ndarray allowed')
if verbose:
print("coordsys = " + coordsys)
if coordsys == 'lonlat':
center_lon = geometry[:, 0].mean()
center_lat = geometry[:, 1].mean()
center_h = geometry[:, 2].mean()
for i in np.arange(nstat):
x, y = util_geo_km(center_lon, center_lat, geometry[i, 0],
geometry[i, 1])
geometry[i, 0] = x
geometry[i, 1] = y
geometry[i, 2] -= center_h
elif coordsys == 'xy':
geometry[:, 0] -= geometry[:, 0].mean()
geometry[:, 1] -= geometry[:, 1].mean()
geometry[:, 2] -= geometry[:, 2].mean()
else:
raise ValueError("Coordsys must be one of 'lonlat', 'xy'")
if return_center:
return np.c_[geometry.T,
np.array((center_lon, center_lat, center_h))].T
else:
return geometry
def get_timeshift(geometry, sll_x, sll_y, sl_s, grdpts_x, grdpts_y):
"""
Returns timeshift table for given array geometry
:param geometry: Nested list containing the arrays geometry, as returned by
get_group_geometry
:param sll_x: slowness x min (lower)
:param sll_y: slowness y min (lower)
:param sl_s: slowness step
:param grdpts_x: number of grid points in x direction
:param grdpts_x: number of grid points in y direction
"""
# unoptimized version for reference
# nstat = len(geometry) # last index are center coordinates
#
# time_shift_tbl = np.empty((nstat, grdpts_x, grdpts_y), dtype=np.float32)
# for k in xrange(grdpts_x):
# sx = sll_x + k * sl_s
# for l in xrange(grdpts_y):
# sy = sll_y + l * sl_s
# time_shift_tbl[:,k,l] = sx * geometry[:, 0] + sy * geometry[:,1]
# time_shift_tbl[:, k, l] = sx * geometry[:, 0] + sy * geometry[:, 1]
# return time_shift_tbl
# optimized version
mx = np.outer(geometry[:, 0], sll_x + np.arange(grdpts_x) * sl_s)
my = np.outer(geometry[:, 1], sll_y + np.arange(grdpts_y) * sl_s)
return np.require(
mx[:, :, np.newaxis].repeat(grdpts_y, axis=2) +
my[:, np.newaxis, :].repeat(grdpts_x, axis=1),
dtype=np.float32)
def get_spoint(stream, stime, etime):
"""
Calculates start and end offsets relative to stime and etime for each
trace in stream in samples.
:type stime: :class:`~obspy.core.utcdatetime.UTCDateTime`
:param stime: Start time
:type etime: :class:`~obspy.core.utcdatetime.UTCDateTime`
:param etime: End time
:returns: start and end sample offset arrays
"""
spoint = np.empty(len(stream), dtype=np.int32, order="C")
epoint = np.empty(len(stream), dtype=np.int32, order="C")
for i, tr in enumerate(stream):
if tr.stats.starttime > stime:
msg = "Specified stime %s is smaller than starttime %s in stream"
raise ValueError(msg % (stime, tr.stats.starttime))
if tr.stats.endtime < etime:
msg = "Specified etime %s is bigger than endtime %s in stream"
raise ValueError(msg % (etime, tr.stats.endtime))
# now we have to adjust to the beginning of real start time
spoint[i] = int((stime - tr.stats.starttime) *
tr.stats.sampling_rate + .5)
epoint[i] = int((tr.stats.endtime - etime) *
tr.stats.sampling_rate + .5)
return spoint, epoint
def array_transff_wavenumber(coords, klim, kstep, coordsys='lonlat'):
"""
Returns array transfer function as a function of wavenumber difference
:type coords: numpy.ndarray
:param coords: coordinates of stations in longitude and latitude in degrees
elevation in km, or x, y, z in km
:type coordsys: str
:param coordsys: valid values: 'lonlat' and 'xy', choose which coordinates
to use
:param klim: either a float to use symmetric limits for wavenumber
differences or the tuple (kxmin, kxmax, kymin, kymax)
"""
coords = get_geometry(coords, coordsys)
if isinstance(klim, float):
kxmin = -klim
kxmax = klim
kymin = -klim
kymax = klim
elif isinstance(klim, tuple):
if len(klim) == 4:
kxmin = klim[0]
kxmax = klim[1]
kymin = klim[2]
kymax = klim[3]
else:
raise TypeError('klim must either be a float or a tuple of length 4')
nkx = int(np.ceil((kxmax + kstep / 10. - kxmin) / kstep))
nky = int(np.ceil((kymax + kstep / 10. - kymin) / kstep))
# careful with meshgrid indexing
kygrid, kxgrid = np.meshgrid(np.linspace(kymin, kymax, nky),
np.linspace(kxmin, kxmax, nkx))
ks = np.transpose(np.vstack((kxgrid.flatten(), kygrid.flatten())))
# z coordinate is not used
# Bug with numpy 1.14.0 (https://github.com/numpy/numpy/issues/10343)
# Nothing we can do.
if np.__version__ == "1.14.0": # pragma: no cover
k_dot_r = np.einsum('ni,mi->nm', ks, coords[:, :2], optimize=False)
else:
k_dot_r = np.einsum('ni,mi->nm', ks, coords[:, :2])
transff = np.abs(np.sum(np.exp(1j * k_dot_r), axis=1))**2 / len(coords)**2
return transff.reshape(nkx, nky)
def array_transff_freqslowness(coords, slim, sstep, fmin, fmax, fstep,
coordsys='lonlat'):
"""
Returns array transfer function as a function of slowness difference and
frequency.
:type coords: numpy.ndarray
:param coords: coordinates of stations in longitude and latitude in degrees
elevation in km, or x, y, z in km
:type coordsys: str
:param coordsys: valid values: 'lonlat' and 'xy', choose which coordinates
to use
:param slim: either a float to use symmetric limits for slowness
differences or the tupel (sxmin, sxmax, symin, symax)
:type fmin: float
:param fmin: minimum frequency in signal
:type fmax: float
:param fmin: maximum frequency in signal
:type fstep: float
:param fmin: frequency sample distance
"""
coords = get_geometry(coords, coordsys)
if isinstance(slim, float):
sxmin = -slim
sxmax = slim
symin = -slim
symax = slim
elif isinstance(slim, tuple):
if len(slim) == 4:
sxmin = slim[0]
sxmax = slim[1]
symin = slim[2]
symax = slim[3]
else:
raise TypeError('slim must either be a float or a tuple of length 4')
nsx = int(np.ceil((sxmax + sstep / 10. - sxmin) / sstep))
nsy = int(np.ceil((symax + sstep / 10. - symin) / sstep))
nf = int(np.ceil((fmax + fstep / 10. - fmin) / fstep))
transff = np.empty((nsx, nsy))
buff = np.zeros(nf)
for i, sx in enumerate(np.arange(sxmin, sxmax + sstep / 10., sstep)):
for j, sy in enumerate(np.arange(symin, symax + sstep / 10., sstep)):
for k, f in enumerate(np.arange(fmin, fmax + fstep / 10., fstep)):
_sum = 0j
for l in np.arange(len(coords)):
_sum += np.exp(
complex(0., (coords[l, 0] * sx + coords[l, 1] * sy) *
2 * np.pi * f))
buff[k] = abs(_sum) ** 2
transff[i, j] = cumtrapz(buff, dx=fstep)[-1]
transff /= transff.max()
return transff
def dump(pow_map, apow_map, i):
"""
Example function to use with `store` kwarg in
:func:`~obspy.signal.array_analysis.array_processing`.
"""
np.savez('pow_map_%d.npz' % i, pow_map)
np.savez('apow_map_%d.npz' % i, apow_map)
def array_processing(stream, win_len, win_frac, sll_x, slm_x, sll_y, slm_y,
sl_s, semb_thres, vel_thres, frqlow, frqhigh, stime,
etime, prewhiten, verbose=False, coordsys='lonlat',
timestamp='mlabday', method=0, store=None, sl_corr=[0.,0.],
normalize_waveforms=False):
"""
Method for Seismic-Array-Beamforming/FK-Analysis/Capon
:param stream: Stream object, the trace.stats dict like class must
contain an :class:`~obspy.core.util.attribdict.AttribDict` with
'latitude', 'longitude' (in degrees) and 'elevation' (in km), or 'x',
'y', 'elevation' (in km) items/attributes. See param ``coordsys``.
:type win_len: float
:param win_len: Sliding window length in seconds
:type win_frac: float
:param win_frac: Fraction of sliding window to use for step
:type sll_x: float
:param sll_x: slowness x min (lower)
:type slm_x: float
:param slm_x: slowness x max
:type sll_y: float
:param sll_y: slowness y min (lower)
:type slm_y: float
:param slm_y: slowness y max
:type sl_s: float
:param sl_s: slowness step
:type semb_thres: float
:param semb_thres: Threshold for semblance
:type vel_thres: float
:param vel_thres: Threshold for velocity
:type frqlow: float
:param frqlow: lower frequency for fk/capon
:type frqhigh: float
:param frqhigh: higher frequency for fk/capon
:type stime: :class:`~obspy.core.utcdatetime.UTCDateTime`
:param stime: Start time of interest
:type etime: :class:`~obspy.core.utcdatetime.UTCDateTime`
:param etime: End time of interest
:type prewhiten: int
:param prewhiten: Do prewhitening, values: 1 or 0
:param coordsys: valid values: 'lonlat' and 'xy', choose which stream
attributes to use for coordinates
:type timestamp: str
:param timestamp: valid values: 'julsec' and 'mlabday'; 'julsec' returns
the timestamp in seconds since 1970-01-01T00:00:00, 'mlabday'
returns the timestamp in days (decimals represent hours, minutes
and seconds) since '0001-01-01T00:00:00' as needed for matplotlib
date plotting (see e.g. matplotlib's num2date)
:type method: int
:param method: the method to use 0 == bf, 1 == capon
:type store: function
:param store: A custom function which gets called on each iteration. It is
called with the relative power map and the time offset as first and
second arguments and the iteration number as third argument. Useful for
storing or plotting the map for each iteration. For this purpose the
dump function of this module can be used.
:return: :class:`numpy.ndarray` of timestamp, relative relpow, absolute
relpow, backazimuth, slowness
"""
res = []
eotr = True
# check that sampling rates do not vary
fs = stream[0].stats.sampling_rate
if len(stream) != len(stream.select(sampling_rate=fs)):
msg = 'in sonic sampling rates of traces in stream are not equal'
raise ValueError(msg)
grdpts_x = int(((slm_x - sll_x) / sl_s + 0.5) + 1)
grdpts_y = int(((slm_y - sll_y) / sl_s + 0.5) + 1)
geometry = get_geometry(stream, coordsys=coordsys, verbose=verbose)
if verbose:
print("geometry:")
print(geometry)
print("stream contains following traces:")
print(stream)
print("stime = " + str(stime) + ", etime = " + str(etime))
time_shift_table = get_timeshift(geometry, sll_x, sll_y,
sl_s, grdpts_x, grdpts_y)
# offset of arrays
spoint, _epoint = get_spoint(stream, stime, etime)
#
# loop with a sliding window over the dat trace array and apply bbfk
#
nstat = len(stream)
fs = stream[0].stats.sampling_rate
nsamp = int(win_len * fs)
nstep = int(nsamp * win_frac)
# generate plan for rfftr
nfft = next_pow_2(nsamp)
deltaf = fs / float(nfft)
nlow = int(frqlow / float(deltaf) + 0.5)
nhigh = int(frqhigh / float(deltaf) + 0.5)
nlow = max(1, nlow) # avoid using the offset
nhigh = min(nfft // 2 - 1, nhigh) # avoid using nyquist
nf = nhigh - nlow + 1 # include upper and lower frequency
# to speed up the routine a bit we estimate all steering vectors in advance
steer = np.empty((nf, grdpts_x, grdpts_y, nstat), dtype=np.complex128)
clibsignal.calcSteer(nstat, grdpts_x, grdpts_y, nf, nlow,
deltaf, time_shift_table, steer)
_r = np.empty((nf, nstat, nstat), dtype=np.complex128)
ft = np.empty((nstat, nf), dtype=np.complex128)
newstart = stime
# 0.22 matches 0.2 of historical C bbfk.c
tap = cosine_taper(nsamp, p=0.22)
offset = 0
relpow_map = np.empty((grdpts_x, grdpts_y), dtype=np.float64)
abspow_map = np.empty((grdpts_x, grdpts_y), dtype=np.float64)
while eotr:
try:
for i, tr in enumerate(stream):
dat = tr.data[spoint[i] + offset:
spoint[i] + offset + nsamp]
dat = (dat - dat.mean()) * tap
if normalize_waveforms:
dat = dat/np.max(np.abs(dat))
ft[i, :] = np.fft.rfft(dat, nfft)[nlow:nlow + nf]
except IndexError:
break
ft = np.ascontiguousarray(ft, np.complex128)
relpow_map.fill(0.)
abspow_map.fill(0.)
# computing the covariances of the signal at different receivers
dpow = 0.
for i in range(nstat):
for j in range(i, nstat):
_r[:, i, j] = ft[i, :] * ft[j, :].conj()
if method == 1:
_r[:, i, j] /= np.abs(_r[:, i, j].sum())
if i != j:
_r[:, j, i] = _r[:, i, j].conjugate()
else:
dpow += np.abs(_r[:, i, j].sum())
dpow *= nstat
if method == 1:
# P(f) = 1/(e.H R(f)^-1 e)
for n in range(nf):
_r[n, :, :] = np.linalg.pinv(_r[n, :, :], rcond=1e-6)
errcode = clibsignal.generalizedBeamformer(
relpow_map, abspow_map, steer, _r, nstat, prewhiten,
grdpts_x, grdpts_y, nf, dpow, method)
if errcode != 0:
msg = 'generalizedBeamforming exited with error %d'
raise Exception(msg % errcode)