-
Notifications
You must be signed in to change notification settings - Fork 0
/
PUBB_READY_a_huber_sweep_alpha_cut.py
247 lines (211 loc) · 5.96 KB
/
PUBB_READY_a_huber_sweep_alpha_cut.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import numpy as np
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.ticker as ticker
import src.plotting_utils as pu
from scipy.optimize import minimize
import src.fpeqs as fp
from src.fpeqs_BO import (
var_func_BO,
var_hat_func_BO_single_noise,
var_hat_func_BO_num_double_noise,
var_hat_func_BO_num_decorrelated_noise,
)
from src.fpeqs_L2 import (
var_func_L2,
var_hat_func_L2_single_noise,
var_hat_func_L2_double_noise,
var_hat_func_L2_decorrelated_noise,
)
from src.fpeqs_L1 import (
var_hat_func_L1_single_noise,
var_hat_func_L1_double_noise,
var_hat_func_L1_decorrelated_noise,
)
from src.fpeqs_Huber import (
var_hat_func_Huber_single_noise,
var_hat_func_Huber_double_noise,
var_hat_func_Huber_decorrelated_noise,
)
SMALLEST_REG_PARAM = 1e-7
SMALLEST_HUBER_PARAM = 1e-7
MAX_ITER = 2500
XATOL = 1e-8
FATOL = 1e-8
save = True
width = 1.0 * 458.63788
# width = 398.3386
random_number = np.random.randint(100)
alpha_cut = 1.0
delta_small = 0.1
delta_large = 5.0
beta = 1.0
eps=0.3
pu.initialization_mpl()
tuple_size = pu.set_size(width, fraction=0.49)
fig, ax = plt.subplots(1, 1, figsize=tuple_size)
fig.subplots_adjust(left=0.2)
fig.subplots_adjust(bottom=0.2)
fig.subplots_adjust(top=0.9)
fig.subplots_adjust(right=0.96)
# -----------
def _find_optimal_reg_param_gen_error(
alpha, var_func, var_hat_func, initial_cond, var_hat_kwargs, inital_value
):
def minimize_fun(reg_param):
m, q, _ = fp.state_equations(
var_func,
var_hat_func,
reg_param=reg_param,
alpha=alpha,
init=initial_cond,
var_hat_kwargs=var_hat_kwargs,
)
return 1 + q - 2 * m
bnds = [(SMALLEST_REG_PARAM, None)]
obj = minimize(
minimize_fun,
x0=inital_value,
method="Nelder-Mead",
bounds=bnds,
options={"xatol": XATOL, "fatol": FATOL},
) # , , "maxiter":MAX_ITER
if obj.success:
fun_val = obj.fun
reg_param_opt = obj.x
return fun_val, reg_param_opt
else:
raise RuntimeError("Minima could not be found.")
def _find_optimal_reg_param_and_huber_parameter_gen_error(
alpha, var_hat_func, initial, var_hat_kwargs, inital_values
):
def minimize_fun(x):
reg_param, a = x
var_hat_kwargs.update({"a": a})
m, q, _ = fp.state_equations(
var_func_L2,
var_hat_func,
reg_param=reg_param,
alpha=alpha,
init=initial,
var_hat_kwargs=var_hat_kwargs,
)
return 1 + q - 2 * m
bnds = [(SMALLEST_REG_PARAM, None), (SMALLEST_HUBER_PARAM, None)]
obj = minimize(
minimize_fun,
x0=inital_values,
method="Nelder-Mead",
bounds=bnds,
options={
"xatol": XATOL,
"fatol": FATOL,
"adaptive": True,
},
)
if obj.success:
fun_val = obj.fun
reg_param_opt, a_opt = obj.x
return fun_val, reg_param_opt, a_opt
else:
raise RuntimeError("Minima could not be found.")
# -------------------
N = 50
# epsilons = np.linspace(0.0, 0.5, N)
# epsilons = np.logspace(-4, np.log10(0.5), N)
a_hub = np.logspace(-3, 2, N)
l2_err = np.empty(len(a_hub))
l1_err = np.empty(len(a_hub))
huber_err = np.empty(len(a_hub))
bo_err = np.empty(len(a_hub))
params = {
"delta_small": delta_small,
"delta_large": delta_large,
"percentage": float(eps),
"beta": beta,
}
while True:
m = 0.89 * np.random.random() + 0.1
q = 0.89 * np.random.random() + 0.1
sigma = 0.89 * np.random.random() + 0.1
if np.square(m) < q + delta_small * q and np.square(m) < q + delta_large * q:
initial_condition = [m, q, sigma]
break
l2_err, _ = _find_optimal_reg_param_gen_error(
alpha_cut,
var_func_L2,
var_hat_func_L2_decorrelated_noise,
initial_condition,
params,
0.5,
)
l1_err, _ = _find_optimal_reg_param_gen_error(
alpha_cut,
var_func_L2,
var_hat_func_L1_decorrelated_noise,
initial_condition,
params,
0.5,
)
pup = {
"delta_small": delta_small,
"delta_large": delta_large,
"percentage": float(eps),
"beta": beta,
}
m, q, sigma = fp._find_fixed_point(
alpha_cut,
var_func_BO,
var_hat_func_BO_num_decorrelated_noise,
1.0,
initial_condition,
pup,
)
bo_err = 1 - 2 * m + q
print("done l2")
last_lambda = 1
for idx, a in enumerate(a_hub[::-1]):
params.update({'a':a})
huber_err[len(huber_err) - idx - 1], lam = _find_optimal_reg_param_gen_error(
alpha_cut,
var_func_L2,
var_hat_func_Huber_decorrelated_noise,
initial_condition,
params,
last_lambda,
)
print(lam)
last_lambda = lam
print("done hub {}".format(idx))
# np.savetxt(
# "./data/sweep_a_hub_fixed_delta_{:.2f}_beta_{:.2f}_alpha_cut_{:.2f}.csv".format(
# delta_large, beta, alpha_cut
# ),
# np.vstack((a_hub, l2_err, l1_err, huber_err, bo_err)).T,
# delimiter=",",
# header="epsilons,l2,l1,Huber,BO"
# )
print("done bo {}".format(idx))
ax.ticklabel_format(axis='y', style='sci', scilimits=(0,0), useOffset=True)
ax.axhline(y=l2_err, xmin=0.0,xmax=1.0,label=r"$\ell_2$", color="tab:blue")
ax.axhline(y=l1_err, xmin=0.0,xmax=1.0,label=r"$\ell_1$", color="tab:orange")
ax.axhline(y=bo_err, xmin=0.0,xmax=1.0,label="BO", color="tab:red")
ax.plot(a_hub, huber_err, label="Huber", color="tab:green")
ax.set_ylabel(r"$E_{\text{gen}}$")
ax.set_xlabel(r"$a$")
ax.set_xscale("log")
# ax.set_yscale("log")
ax.set_xlim([a_hub[0],a_hub[-1]])
# ax.set_ylim([0.09, 1.2])
ax.legend(ncol=2)
# ax.set_xticks([0.0001, 0.001, 0.01, 0.1, 0.5])
# ax.set_xticklabels([r"$10^{-4}$", r"$10^{-3}$", r"$10^{-2}$", r"$10^{-1}$", r"$0.5$"])
if save:
pu.save_plot(
fig,
"sweep_a_fixed_delta_{:.2f}_beta_{:.2f}_alpha_cut_{:.2f}_delta_small_{:.2f}".format(
delta_large, beta, alpha_cut, delta_small
),
)
plt.show()