forked from rykov8/ssd_keras
-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathssd_metric.py
260 lines (209 loc) · 8.8 KB
/
ssd_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""Tools for model evaluation."""
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import itertools
from ssd_utils import iou
eps = 1e-10
def evaluate_results(ground_truth, detection_results, gt_util, iou_thresh=0.5, max_dets=None, figsize=(10,10), return_fmeasure=False):
"""Evaluates detection results, plots precision-recall curves and
calculates mean Average Precision.
# Arguments
ground_truth: List of ground truth data with
shape (objects, x1+y1+x2+y2+label)
detection_results: List of corresponding detection Results with
shape (objects, x1+y1+x2+y2+confidence+label)
gt_util: Instance of BaseGTUtility containing metadata about the
dataset.
iou_thresh: Minimum intersection over union required to associate
a detected bounding box to a ground truth bounding box.
max_dets: Maximal number of used detections per image.
# Notes
The maximum number of detections per image can also be limited by
keep_top_k argument in PriorUtil.decode.
"""
err = np.geterr()
np.seterr(divide='ignore', invalid='ignore')
gt = ground_truth
dt = detection_results
num_classes = gt_util.num_classes
colors = gt_util.colors
TP = []
FP = []
FN_sum = np.zeros(num_classes)
num_groundtruth_boxes = np.zeros(num_classes)
num_detections = np.zeros(num_classes)
conf = []
for i in range(len(gt)):
gt_boxes = gt[i][:,:4]
gt_labels = gt[i][:,-1].astype(np.int32)
conf_img = dt[i][:,4]
order = np.argsort(-conf_img) # sort by confidence
order = order[:max_dets] # only max_dets detections per image
conf.append(conf_img[order])
dt_img = dt[i][order]
dt_boxes = dt_img[:,:4]
dt_labels = dt_img[:,-1].astype(np.int32)
num_dt_img = len(dt_labels)
TP_img = np.zeros((num_dt_img, num_classes))
FP_img = np.zeros((num_dt_img, num_classes))
FN_img_sum = np.zeros(num_classes)
for c in range(1,num_classes):
gt_idxs = np.argwhere(gt_labels == c)[:,0]
dt_idxs = np.argwhere(dt_labels == c)[:,0]
num_gt = len(gt_idxs)
num_dt = len(dt_idxs)
num_groundtruth_boxes[c] += num_gt
num_detections[c] += num_dt
assignment = np.zeros(num_gt, dtype=np.bool)
if num_dt > 0:
for dt_idx in dt_idxs:
if len(gt_idxs) > 0:
gt_iou = iou(dt_boxes[dt_idx], gt_boxes[gt_idxs])
max_gt_idx = np.argmax(gt_iou)
if gt_iou[max_gt_idx] > iou_thresh:
if not assignment[max_gt_idx]:
# true positive
TP_img[dt_idx, c] = 1
assignment[max_gt_idx] = True
continue
# false positive (multiple detections)
# false positive (intersection to low)
# false positive (no ground truth of this class)
FP_img[dt_idx, c] = 1
FN_img_sum[c] = np.sum(np.logical_not(assignment))
if False: # debug
plt.figure(figsize=[10]*2)
plt.imshow(images[i])
gt_util.plot_gt(gt[i])
for b in dt[i]:
plot_box(b[:4], 'percent', color='b')
plt.show()
print('%-19s %2s %2s %2s' % ('', 'TP', 'FP', 'FN'))
for i in range(num_classes):
num_TP_img = np.sum(TP_img[:,i])
num_FP_img = np.sum(FP_img[:,i])
num_FN_img = FN_img_sum[i]
if num_TP_img > 0 or num_FP_img > 0 or num_FN_img > 0:
print('%2i %-16s %2i %2i %2i' % (i, gt_util.classes[i], num_TP_img, num_FP_img, num_FN_img))
TP.append(TP_img)
FP.append(FP_img)
FN_sum += FN_img_sum
conf = np.concatenate(conf)
order = np.argsort(-conf)
TP = np.concatenate(TP)[order]
FP = np.concatenate(FP)[order]
TP_sum = np.sum(TP, axis=0)
FP_sum = np.sum(FP, axis=0)
if return_fmeasure:
TP_sum = np.sum(TP_sum)
FP_sum = np.sum(FP_sum)
FN_sum = np.sum(FN_sum)
recall = TP_sum / (TP_sum+FN_sum)
precision = TP_sum / (TP_sum+FP_sum)
fmeasure = 2 * precision * recall / (precision + recall + eps)
np.seterr(**err)
return fmeasure
# TP + FN = num_groundtruth_boxes
#print(np.sum(TP, axis=0) + FN_sum)
#print(num_groundtruth_boxes)
# TP + FP = num_detections
#print(np.sum(TP) + np.sum(FP), len(conf))
tp = np.cumsum(TP, axis=0)
fp = np.cumsum(FP, axis=0)
recall = tp / num_groundtruth_boxes
precision = tp / (tp+fp)
# add boundary values
mrec = np.empty((len(conf)+2, num_classes))
mrec[0,:] = 0
mrec[1:-1,:] = recall
mrec[-1,:] = 1
mpre = np.empty((len(conf)+2, num_classes))
mpre[0,:] = 0
mpre[1:-1,:] = np.nan_to_num(precision)
mpre[-1,:] = 0
# AP according Pascal VOC 2012
# cummax in reverse order
mpre = np.flip(np.maximum.accumulate(np.flip(mpre, axis=0), axis=0), axis=0)
AP = np.sum((mrec[1:,:]-mrec[:-1,:])*mpre[1:,:], axis=0)
MAP = np.mean(AP[1:])
print('%-19s %8s %8s %8s %6s' % ('Class', 'TP', 'FP', 'FN', 'AP'))
for i in range(1, num_classes):
print('%2i %-16s %8i %8i %8i %6.3f' %
(i, gt_util.classes[i], TP_sum[i], FP_sum[i], FN_sum[i], AP[i]))
print('%-19s %8i %8i %8i %6.3f @ %g %s' %
('Sum / mAP', np.sum(TP_sum), np.sum(FP_sum), np.sum(FN_sum), MAP, iou_thresh, max_dets))
plt.figure(figsize=figsize)
ax = plt.gca()
if False: # colors
ax.set_prop_cycle(plt.cycler('color', colors[1:]))
ax.set_xlim(0.0, 1.0)
ax.set_ylim(0.0, 1.0)
ax.grid()
plt.step(mrec[:,1:], mpre[:,1:], where='pre')
plt.legend(gt_util.classes[1:], bbox_to_anchor=(1.04,1), loc="upper left")
plt.xlabel('recall')
plt.ylabel('precision')
plt.show()
np.seterr(**err)
def fscore(precision, recall, beta=1):
"""Computes the F score.
The F score is the weighted harmonic mean of precision and recall.
This is useful for multi-label classification, where input samples can be
classified as sets of labels. By only using accuracy (precision) a model
would achieve a perfect score by simply assigning every class to every
input. In order to avoid this, a metric should penalize incorrect class
assignments as well (recall). The F-beta score (ranged from 0.0 to 1.0)
computes this, as a weighted mean of the proportion of correct class
assignments vs. the proportion of incorrect class assignments.
With beta = 1, this is equivalent to a F-measure (F1 score). With beta < 1,
assigning correct classes becomes more important, and with beta > 1 the
metric is instead weighted towards penalizing incorrect class assignments.
# Arguments
precision: Scalar or array.
recall: Array of same shape as precision.
beta: Scalar.
# Return
score: Array of same shape as precision and recall.
"""
#eps = K.epsilon()
eps = 1e-10
p = precision
r = recall
bb = beta ** 2
score = (1 + bb) * (p * r) / (bb * p + r + eps)
return score
def accuracy(actual, predicted):
"""ACC = (TP+TN)/num_samples"""
actual = np.array(actual)
predicted = np.array(predicted)
return (actual == predicted).sum() / float(len(actual))
def confusion_matrix(actual, predicted, num_classes, normalize=False):
m = [[0] * num_classes for i in range(num_classes)]
for i in range(len(actual)):
m[actual[i]][predicted[i]] += 1
m = np.array(m)
if normalize:
m = m / np.max(m)
return m
def plot_confusion_matrix(confusion_matrix, classes, figsize=(10,10)):
plt.figure(figsize=figsize)
cmap = plt.cm.Blues
n = len(classes)
ticks = np.arange(n)
plt.matshow(confusion_matrix, cmap=cmap, fignum=1)
plt.xticks(ticks, classes, rotation=90)
plt.yticks(ticks, classes, rotation=0)
plt.ylabel('Actual')
plt.xlabel('Prediction')
ax = plt.gca()
ax.xaxis.set_ticks_position('top')
thresh = confusion_matrix.max() / 2.
for i, j in itertools.product(ticks, ticks):
plt.text(j, i, np.round(confusion_matrix[i, j], 3),
horizontalalignment="center",
color="white" if confusion_matrix[i, j] > thresh else "black")
divider = make_axes_locatable(ax)
cax = divider.append_axes('right', size=0.1, pad=0.05)
plt.colorbar(cax=cax)
plt.show()