-
Notifications
You must be signed in to change notification settings - Fork 351
/
utils.py
294 lines (230 loc) · 10.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
from PIL import ImageDraw, Image
def get_boxes_and_inputs_pb(frozen_graph):
with frozen_graph.as_default():
boxes = tf.get_default_graph().get_tensor_by_name("output_boxes:0")
inputs = tf.get_default_graph().get_tensor_by_name("inputs:0")
return boxes, inputs
def get_boxes_and_inputs(model, num_classes, size, data_format):
inputs = tf.placeholder(tf.float32, [1, size, size, 3])
with tf.variable_scope('detector'):
detections = model(inputs, num_classes,
data_format=data_format)
boxes = detections_boxes(detections)
return boxes, inputs
def load_graph(frozen_graph_filename):
with tf.gfile.GFile(frozen_graph_filename, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name="")
return graph
def freeze_graph(sess, output_graph):
output_node_names = [
"output_boxes",
"inputs",
]
output_node_names = ",".join(output_node_names)
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess,
tf.get_default_graph().as_graph_def(),
output_node_names.split(",")
)
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("{} ops written to {}.".format(len(output_graph_def.node), output_graph))
def load_weights(var_list, weights_file):
"""
Loads and converts pre-trained weights.
:param var_list: list of network variables.
:param weights_file: name of the binary file.
:return: list of assign ops
"""
with open(weights_file, "rb") as fp:
_ = np.fromfile(fp, dtype=np.int32, count=5)
weights = np.fromfile(fp, dtype=np.float32)
ptr = 0
i = 0
assign_ops = []
while i < len(var_list) - 1:
var1 = var_list[i]
var2 = var_list[i + 1]
# do something only if we process conv layer
if 'Conv' in var1.name.split('/')[-2]:
# check type of next layer
if 'BatchNorm' in var2.name.split('/')[-2]:
# load batch norm params
gamma, beta, mean, var = var_list[i + 1:i + 5]
batch_norm_vars = [beta, gamma, mean, var]
for var in batch_norm_vars:
shape = var.shape.as_list()
num_params = np.prod(shape)
var_weights = weights[ptr:ptr + num_params].reshape(shape)
ptr += num_params
assign_ops.append(
tf.assign(var, var_weights, validate_shape=True))
# we move the pointer by 4, because we loaded 4 variables
i += 4
elif 'Conv' in var2.name.split('/')[-2]:
# load biases
bias = var2
bias_shape = bias.shape.as_list()
bias_params = np.prod(bias_shape)
bias_weights = weights[ptr:ptr +
bias_params].reshape(bias_shape)
ptr += bias_params
assign_ops.append(
tf.assign(bias, bias_weights, validate_shape=True))
# we loaded 1 variable
i += 1
# we can load weights of conv layer
shape = var1.shape.as_list()
num_params = np.prod(shape)
var_weights = weights[ptr:ptr + num_params].reshape(
(shape[3], shape[2], shape[0], shape[1]))
# remember to transpose to column-major
var_weights = np.transpose(var_weights, (2, 3, 1, 0))
ptr += num_params
assign_ops.append(
tf.assign(var1, var_weights, validate_shape=True))
i += 1
return assign_ops
def detections_boxes(detections):
"""
Converts center x, center y, width and height values to coordinates of top left and bottom right points.
:param detections: outputs of YOLO v3 detector of shape (?, 10647, (num_classes + 5))
:return: converted detections of same shape as input
"""
center_x, center_y, width, height, attrs = tf.split(
detections, [1, 1, 1, 1, -1], axis=-1)
w2 = width / 2
h2 = height / 2
x0 = center_x - w2
y0 = center_y - h2
x1 = center_x + w2
y1 = center_y + h2
boxes = tf.concat([x0, y0, x1, y1], axis=-1)
detections = tf.concat([boxes, attrs], axis=-1, name="output_boxes")
return detections
def _iou(box1, box2):
"""
Computes Intersection over Union value for 2 bounding boxes
:param box1: array of 4 values (top left and bottom right coords): [x0, y0, x1, x2]
:param box2: same as box1
:return: IoU
"""
b1_x0, b1_y0, b1_x1, b1_y1 = box1
b2_x0, b2_y0, b2_x1, b2_y1 = box2
int_x0 = max(b1_x0, b2_x0)
int_y0 = max(b1_y0, b2_y0)
int_x1 = min(b1_x1, b2_x1)
int_y1 = min(b1_y1, b2_y1)
int_area = max(int_x1 - int_x0, 0) * max(int_y1 - int_y0, 0)
b1_area = (b1_x1 - b1_x0) * (b1_y1 - b1_y0)
b2_area = (b2_x1 - b2_x0) * (b2_y1 - b2_y0)
# we add small epsilon of 1e-05 to avoid division by 0
iou = int_area / (b1_area + b2_area - int_area + 1e-05)
return iou
def non_max_suppression(predictions_with_boxes, confidence_threshold, iou_threshold=0.4):
"""
Applies Non-max suppression to prediction boxes.
:param predictions_with_boxes: 3D numpy array, first 4 values in 3rd dimension are bbox attrs, 5th is confidence
:param confidence_threshold: the threshold for deciding if prediction is valid
:param iou_threshold: the threshold for deciding if two boxes overlap
:return: dict: class -> [(box, score)]
"""
conf_mask = np.expand_dims(
(predictions_with_boxes[:, :, 4] > confidence_threshold), -1)
predictions = predictions_with_boxes * conf_mask
result = {}
for i, image_pred in enumerate(predictions):
# Remove predictions if all the prediction vector is zero
image_pred = image_pred[np.any(image_pred, axis=-1)]
bbox_attrs = image_pred[:, :5]
classes = image_pred[:, 5:]
classes = np.argmax(classes, axis=-1)
unique_classes = list(set(classes.reshape(-1)))
for cls in unique_classes:
cls_mask = classes == cls
cls_boxes = bbox_attrs[np.nonzero(cls_mask)]
cls_boxes = cls_boxes[cls_boxes[:, -1].argsort()[::-1]]
cls_scores = cls_boxes[:, -1]
cls_boxes = cls_boxes[:, :-1]
while len(cls_boxes) > 0:
box = cls_boxes[0]
score = cls_scores[0]
if cls not in result:
result[cls] = []
result[cls].append((box, score))
cls_boxes = cls_boxes[1:]
cls_scores = cls_scores[1:]
ious = np.array([_iou(box, x) for x in cls_boxes])
iou_mask = ious < iou_threshold
cls_boxes = cls_boxes[np.nonzero(iou_mask)]
cls_scores = cls_scores[np.nonzero(iou_mask)]
return result
def load_coco_names(file_name):
names = {}
with open(file_name) as f:
names = {id: name for id, name in enumerate(f)}
return names
def draw_boxes(boxes, img, cls_names, detection_size, is_letter_box_image):
draw = ImageDraw.Draw(img)
for cls, bboxs in boxes.items():
color = tuple(np.random.randint(0, 256, 3))
for box, score in bboxs:
box = convert_to_original_size(box, np.array(detection_size),
np.array(img.size),
is_letter_box_image)
draw.rectangle(box, outline=color)
draw.text(box[:2], '{} {:.2f}%'.format(
cls_names[cls], score * 100), fill=color)
def convert_to_original_size(box, size, original_size, is_letter_box_image):
if is_letter_box_image:
box = box.reshape(2, 2)
box[0, :] = letter_box_pos_to_original_pos(box[0, :], size, original_size)
box[1, :] = letter_box_pos_to_original_pos(box[1, :], size, original_size)
else:
ratio = original_size / size
box = box.reshape(2, 2) * ratio
return list(box.reshape(-1))
def letter_box_image(image: Image.Image, output_height: int, output_width: int, fill_value)-> np.ndarray:
"""
Fit image with final image with output_width and output_height.
:param image: PILLOW Image object.
:param output_height: width of the final image.
:param output_width: height of the final image.
:param fill_value: fill value for empty area. Can be uint8 or np.ndarray
:return: numpy image fit within letterbox. dtype=uint8, shape=(output_height, output_width)
"""
height_ratio = float(output_height)/image.size[1]
width_ratio = float(output_width)/image.size[0]
fit_ratio = min(width_ratio, height_ratio)
fit_height = int(image.size[1] * fit_ratio)
fit_width = int(image.size[0] * fit_ratio)
fit_image = np.asarray(image.resize((fit_width, fit_height), resample=Image.BILINEAR))
if isinstance(fill_value, int):
fill_value = np.full(fit_image.shape[2], fill_value, fit_image.dtype)
to_return = np.tile(fill_value, (output_height, output_width, 1))
pad_top = int(0.5 * (output_height - fit_height))
pad_left = int(0.5 * (output_width - fit_width))
to_return[pad_top:pad_top+fit_height, pad_left:pad_left+fit_width] = fit_image
return to_return
def letter_box_pos_to_original_pos(letter_pos, current_size, ori_image_size)-> np.ndarray:
"""
Parameters should have same shape and dimension space. (Width, Height) or (Height, Width)
:param letter_pos: The current position within letterbox image including fill value area.
:param current_size: The size of whole image including fill value area.
:param ori_image_size: The size of image before being letter boxed.
:return:
"""
letter_pos = np.asarray(letter_pos, dtype=np.float)
current_size = np.asarray(current_size, dtype=np.float)
ori_image_size = np.asarray(ori_image_size, dtype=np.float)
final_ratio = min(current_size[0]/ori_image_size[0], current_size[1]/ori_image_size[1])
pad = 0.5 * (current_size - final_ratio * ori_image_size)
pad = pad.astype(np.int32)
to_return_pos = (letter_pos - pad) / final_ratio
return to_return_pos