-
Notifications
You must be signed in to change notification settings - Fork 645
/
demo_page.py
176 lines (133 loc) · 6.44 KB
/
demo_page.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright 2023, YOUDAO
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import streamlit as st
import os, glob
import numpy as np
from yacs import config as CONFIG
import torch
import re
from frontend import g2p_cn_en, ROOT_DIR, read_lexicon, G2p
from config.joint.config import Config
from models.prompt_tts_modified.jets import JETSGenerator
from models.prompt_tts_modified.simbert import StyleEncoder
from transformers import AutoTokenizer
import base64
from pathlib import Path
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MAX_WAV_VALUE = 32768.0
config = Config()
def create_download_link():
pdf_path = Path("EmotiVoice_UserAgreement_易魔声用户协议.pdf")
base64_pdf = base64.b64encode(pdf_path.read_bytes()).decode("utf-8") # val looks like b'...'
return f'<a href="data:application/octet-stream;base64,{base64_pdf}" download="EmotiVoice_UserAgreement_易魔声用户协议.pdf.pdf">EmotiVoice_UserAgreement_易魔声用户协议.pdf</a>'
html=create_download_link()
st.set_page_config(
page_title="demo page",
page_icon="📕",
)
st.write("# Text-To-Speech")
st.markdown(f"""
### How to use:
- Simply select a **Speaker ID**, type in the **text** you want to convert and the emotion **Prompt**, like a single word or even a sentence. Then click on the **Synthesize** button below to start voice synthesis.
- You can download the audio by clicking on the vertical three points next to the displayed audio widget.
- For more information on **'Speaker ID'**, please consult the [EmotiVoice voice wiki page](https://github.com/netease-youdao/EmotiVoice/tree/main/data/youdao/text)
- This interactive demo page is provided under the {html} file. The audio is synthesized by AI. 音频由AI合成,仅供参考。
""", unsafe_allow_html=True)
def scan_checkpoint(cp_dir, prefix, c=8):
pattern = os.path.join(cp_dir, prefix + '?'*c)
cp_list = glob.glob(pattern)
if len(cp_list) == 0:
return None
return sorted(cp_list)[-1]
@st.cache_resource
def get_models():
am_checkpoint_path = scan_checkpoint(f'{config.output_directory}/prompt_tts_open_source_joint/ckpt', 'g_')
style_encoder_checkpoint_path = scan_checkpoint(f'{config.output_directory}/style_encoder/ckpt', 'checkpoint_', 6)#f'{config.output_directory}/style_encoder/ckpt/checkpoint_163431'
with open(config.model_config_path, 'r') as fin:
conf = CONFIG.load_cfg(fin)
conf.n_vocab = config.n_symbols
conf.n_speaker = config.speaker_n_labels
style_encoder = StyleEncoder(config)
model_CKPT = torch.load(style_encoder_checkpoint_path, map_location="cpu")
model_ckpt = {}
for key, value in model_CKPT['model'].items():
new_key = key[7:]
model_ckpt[new_key] = value
style_encoder.load_state_dict(model_ckpt, strict=False)
generator = JETSGenerator(conf).to(DEVICE)
model_CKPT = torch.load(am_checkpoint_path, map_location=DEVICE)
generator.load_state_dict(model_CKPT['generator'])
generator.eval()
tokenizer = AutoTokenizer.from_pretrained(config.bert_path)
with open(config.token_list_path, 'r') as f:
token2id = {t.strip():idx for idx, t, in enumerate(f.readlines())}
with open(config.speaker2id_path, encoding='utf-8') as f:
speaker2id = {t.strip():idx for idx, t in enumerate(f.readlines())}
return (style_encoder, generator, tokenizer, token2id, speaker2id)
def get_style_embedding(prompt, tokenizer, style_encoder):
prompt = tokenizer([prompt], return_tensors="pt")
input_ids = prompt["input_ids"]
token_type_ids = prompt["token_type_ids"]
attention_mask = prompt["attention_mask"]
with torch.no_grad():
output = style_encoder(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
)
style_embedding = output["pooled_output"].cpu().squeeze().numpy()
return style_embedding
def tts(name, text, prompt, content, speaker, models):
(style_encoder, generator, tokenizer, token2id, speaker2id)=models
style_embedding = get_style_embedding(prompt, tokenizer, style_encoder)
content_embedding = get_style_embedding(content, tokenizer, style_encoder)
speaker = speaker2id[speaker]
text_int = [token2id[ph] for ph in text.split()]
sequence = torch.from_numpy(np.array(text_int)).to(DEVICE).long().unsqueeze(0)
sequence_len = torch.from_numpy(np.array([len(text_int)])).to(DEVICE)
style_embedding = torch.from_numpy(style_embedding).to(DEVICE).unsqueeze(0)
content_embedding = torch.from_numpy(content_embedding).to(DEVICE).unsqueeze(0)
speaker = torch.from_numpy(np.array([speaker])).to(DEVICE)
with torch.no_grad():
infer_output = generator(
inputs_ling=sequence,
inputs_style_embedding=style_embedding,
input_lengths=sequence_len,
inputs_content_embedding=content_embedding,
inputs_speaker=speaker,
alpha=1.0
)
audio = infer_output["wav_predictions"].squeeze()* MAX_WAV_VALUE
audio = audio.cpu().numpy().astype('int16')
return audio
speakers = config.speakers
models = get_models()
lexicon = read_lexicon(f"{ROOT_DIR}/lexicon/librispeech-lexicon.txt")
g2p = G2p()
def new_line(i):
col1, col2, col3, col4 = st.columns([1.5, 1.5, 3.5, 1.3])
with col1:
speaker=st.selectbox("Speaker ID (说话人)", speakers, key=f"{i}_speaker")
with col2:
prompt=st.text_input("Prompt (开心/悲伤)", "", key=f"{i}_prompt")
with col3:
content=st.text_input("Text to be synthesized into speech (合成文本)", "合成文本", key=f"{i}_text")
with col4:
lang=st.selectbox("Language (语言)", ["zh_us"], key=f"{i}_lang")
flag = st.button(f"Synthesize (合成)", key=f"{i}_button1")
if flag:
text = g2p_cn_en(content, g2p, lexicon)
path = tts(i, text, prompt, content, speaker, models)
st.audio(path, sample_rate=config.sampling_rate)
new_line(0)