-
Notifications
You must be signed in to change notification settings - Fork 0
/
Mission_to_Mars_Challenge.py
175 lines (86 loc) · 2.68 KB
/
Mission_to_Mars_Challenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# Import Splinter and BeautifulSoup
from splinter import Browser
from bs4 import BeautifulSoup as soup
from webdriver_manager.chrome import ChromeDriverManager
import pandas as pd
# In[2]:
executable_path = {'executable_path': ChromeDriverManager().install()}
browser = Browser('chrome', **executable_path, headless=False)
# In[3]:
# Visit the mars nasa news site
url = 'https://redplanetscience.com'
browser.visit(url)
# Optional delay for loading the page
browser.is_element_present_by_css('div.list_text', wait_time=1)
# In[4]:
html = browser.html
news_soup = soup(html, 'html.parser')
slide_elem = news_soup.select_one('div.list_text')
# In[5]:
slide_elem.find('div', class_='content_title')
# In[6]:
# Use the parent element to find the first `a` tag and save it as `news_title`
news_title = slide_elem.find('div', class_='content_title').get_text()
news_title
# In[7]:
# Use the parent element to find the paragraph text
news_p = slide_elem.find('div', class_='article_teaser_body').get_text()
news_p
# ### Featured Images
# In[8]:
# Visit URL
url = 'https://spaceimages-mars.com'
browser.visit(url)
# In[9]:
# Find and click the full image button
full_image_elem = browser.find_by_tag('button')[1]
full_image_elem.click()
# In[10]:
# Parse the resulting html with soup
html = browser.html
img_soup = soup(html, 'html.parser')
# In[11]:
# Find the relative image url
img_url_rel = img_soup.find('img', class_='fancybox-image').get('src')
img_url_rel
# In[12]:
# Use the base URL to create an absolute URL
img_url = f'https://spaceimages-mars.com/{img_url_rel}'
img_url
# In[13]:
df = pd.read_html('https://galaxyfacts-mars.com')[0]
df.columns=['description', 'Mars', 'Earth']
df.set_index('description', inplace=True)
df
# In[14]:
df.to_html()
# ### D1: Scrape High-Resolution Mars’ Hemisphere Images and Titles
# In[15]:
### Hemispheres
# In[16]:
# 1. Use browser to visit the URL
url = 'https://marshemispheres.com/'
browser.visit(url)
# In[17]:
html = browser.html
img_soup = soup(html, 'html.parser')
# In[34]:
# 2. Create a list to hold the images and titles.
hemisphere_image_urls = []
# 3. Write code to retrieve the image urls and titles for each hemisphere.
for i in range(4):
hemisphere = {}
hemisphere['title'] = browser.find_by_css('a.itemLink h3')[i].text
browser.find_by_css('a.itemLink h3')[i].click()
hemisphere['img_url'] = browser.find_by_text('Sample')['href']
browser.back()
hemisphere_image_urls.append(hemisphere)
# In[35]:
# 4. Print the list that holds the dictionary of each image url and title.
hemisphere_image_urls
# In[36]:
browser.quit()
# In[ ]: