-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_one2seq_qa.py
378 lines (338 loc) · 15.1 KB
/
run_one2seq_qa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# coding=utf-8
from transformers import get_linear_schedule_with_warmup, T5Tokenizer
from transformers import T5ForConditionalGeneration
from tqdm import trange
import random
from utils import save_dataset, set_seed, save_model
import json
import argparse
import time
import copy
from eval_scripts.eval_script_msqa import evaluate_msqa
from read_datasets import *
import ast
import torch
device = torch.device("cuda:0")
def cat_answers(answers):
return split_symbol.join(answers)
def parsing(text):
return text.split(split_symbol)
def get_input_feature(features, tokenizer, max_length):
input_list = []
answers_list = []
for sample in features:
question = sample['question']
if use_context:
context = sample['context']
input_list.append(f'Question: {question} Context: {context}')
else:
input_list.append(f'Question: {question}')
answers_list.append(cat_answers(sample['answers']))
def tokenizer_fun(input_ids, max_len):
encoding = tokenizer(input_ids,
padding='longest',
max_length=max_len,
truncation=True)
ids = encoding.input_ids
mask = encoding.attention_mask
return ids, mask
input_ids, input_masks = tokenizer_fun(input_list, max_length)
answer_ids, _ = tokenizer_fun(answers_list, max_length)
answer_ids = [
[label if label != tokenizer.pad_token_id else -100 for label in labels_example] for labels_example in
answer_ids
]
input_ids = torch.tensor(input_ids, dtype=torch.long).to(device)
input_masks = torch.tensor(input_masks, dtype=torch.long).to(device)
answer_ids = torch.tensor(answer_ids, dtype=torch.long).to(device)
return input_ids, input_masks, answer_ids
@torch.no_grad()
def evaluate(model, test_examples, eval_batch_size, tokenizer, max_len, max_target_len):
model.eval()
step_count = len(test_examples) // eval_batch_size
if step_count * eval_batch_size < len(test_examples):
step_count += 1
step_trange = trange(step_count)
preds = {}
golds = {}
dataset_gold = []
time_all = 0
assert eval_batch_size == 1
for step in step_trange:
beg_index = step * eval_batch_size
end_index = min((step + 1) * eval_batch_size, len(test_examples))
batch_example = [example for example in test_examples[beg_index: end_index]]
input_ids, input_masks, _ = get_input_feature(batch_example, tokenizer, max_len)
beg = time.time()
t5_output = model.generate(
input_ids=input_ids,
max_length=max_target_len,
attention_mask=input_masks,
do_sample=False,
output_hidden_states=True,
return_dict_in_generate=True
)
output_sequences = t5_output.sequences
predicts = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
spans_predicts = [parsing(predict) for predict in predicts]
end = time.time()
time_all += (end - beg)
for spans_predict, sample in zip(spans_predicts, batch_example):
id = sample['id']
answers = sample['answers']
preds[id] = spans_predict
golds[id] = answers
dataset_gold.append({
'id': id,
'context': sample['context'],
'answers': answers,
'pred': spans_predict
})
print('time avg:', round(time_all/len(test_examples), 4))
scores = evaluate_fun(copy.deepcopy(preds), copy.deepcopy(golds))
return scores, preds
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--model_name",
default='/data1/PTLM/t5_base/',
type=str)
parser.add_argument("--debug",
default=False,
type=ast.literal_eval)
parser.add_argument("--only_eval",
default=False,
type=ast.literal_eval)
parser.add_argument("--use_context",
default=True,
type=ast.literal_eval)
parser.add_argument("--gpu",
default="1",
type=str)
parser.add_argument("--dataset_name",
default='msqa',
type=str)
parser.add_argument("--dataset_split",
default='in_house',
type=str)
parser.add_argument("--train_batch_size",
default=24,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=1,
type=int,
help="Total batch size for eval.")
parser.add_argument('--ga',
type=int,
default=2,
help="Gradient accumulation")
parser.add_argument("--results_save_path",
default='results',
type=str)
parser.add_argument("--output_dir",
default='outputs',
type=str)
parser.add_argument("--init_checkpoint",
default=None,
type=str,
help="Initial checkpoint (usually from a pre-trained BERT model)")
parser.add_argument("--init",
default=None,
type=ast.literal_eval,
help="Initial checkpoint (usually from a pre-trained BERT model)")
parser.add_argument("--max_len",
default=2048,
type=int)
parser.add_argument("--max_target_len",
default=512,
type=int)
parser.add_argument("--lr",
default=1e-4,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--epoch_num",
default=40,
type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--acc_epoch",
default=-1,
type=int,
help="Total number of training epochs to perform.")
parser.add_argument('--seed',
type=int,
default=0,
help="random seed for initialization")
args = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
split_symbol = ' # '
if args.model_name == 't5':
args.model_name = '/data1/PTLM/t5_base/'
elif args.model_name == 'unifiedqa':
args.model_name = '/data1/PTLM/t5_unifiedqa_base/'
only_eval = args.only_eval
debug = args.debug
model_name = args.model_name
use_context = args.use_context
read_dataset_fun = read_msqa
evaluate_fun = evaluate_msqa
data_path_base = f'./data/{args.dataset_split}/{args.dataset_name}/'
data_path_train = f'{data_path_base}/train.json'
data_path_dev = f'{data_path_base}/dev.json'
data_path_test = f'{data_path_base}/test.json'
if args.model_name.endswith('/'):
args.model_name = args.model_name[:-1]
model_name_abb = args.model_name.split('/')[-1]
prefix = 'One2Seq'
if use_context:
prefix += '_context'
config_name = f'{prefix}/{args.dataset_name}/{model_name_abb}/{args.dataset_split}'
parameter_name = f'lr_{args.lr}_seed_{args.seed}_bs_{args.train_batch_size}' \
f'_ga_{args.ga}'
output_model_path = f'./{args.output_dir}/{config_name}/{parameter_name}/'
path_save_result = f'./{args.results_save_path}/{config_name}/{parameter_name}/'
os.makedirs(path_save_result, exist_ok=True)
set_seed(args.seed)
if debug:
train_examples = read_dataset_fun(data_path_train)[:10]
dev_examples = read_dataset_fun(data_path_dev)[:10]
test_examples = read_dataset_fun(data_path_test)[:10]
else:
train_examples = read_dataset_fun(data_path_train)
dev_examples = read_dataset_fun(data_path_dev)
test_examples = read_dataset_fun(data_path_test)
train_batch_size = args.train_batch_size // args.ga
tokenizer = T5Tokenizer.from_pretrained(args.model_name)
model = T5ForConditionalGeneration.from_pretrained(args.model_name)
n_gpu = torch.cuda.device_count()
layer_num = model.config.num_layers
layer_per_gpu = layer_num // n_gpu
layer_per_gpu_remainder = layer_num % n_gpu
device_map = {}
cur_layer = 0
for n in range(n_gpu):
device_map[n] = []
if n < layer_per_gpu_remainder:
layer_assigned = layer_per_gpu + 1
else:
layer_assigned = layer_per_gpu
for i in range(layer_assigned):
device_map[n].append(cur_layer)
cur_layer += 1
model.parallelize(device_map)
vocab_size = model.config.vocab_size
print(json.dumps({"lr": args.lr, "model": args.model_name, "seed": args.seed,
"bs": args.train_batch_size,
'ga': args.ga,
"epoch": args.epoch_num,
'use_context': use_context,
"train_path": data_path_train,
"dev_path": data_path_dev,
"test_path": data_path_test,
"train_size": len(train_examples),
"train_examples": len(train_examples),
"dev_size": len(dev_examples),
"test_size": len(test_examples),
'max_len': args.max_len,
'output_model_path': output_model_path,
'path_save_result': path_save_result,
'init_checkpoint': args.init_checkpoint}, indent=2))
print('# parameters:', sum(param.numel() for param in model.parameters()))
if only_eval:
args.init = True
if args.init and args.init_checkpoint is None:
init_checkpoint = f'{output_model_path}/pytorch_model.bin'
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
model.load_state_dict(model_dict, False)
print('init from:', args.init_checkpoint)
elif args.init_checkpoint is not None:
init_checkpoint = args.init_checkpoint
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
model.load_state_dict(model_dict, False)
print('init from:', args.init_checkpoint)
if only_eval:
scores, results_dev = evaluate(model, dev_examples, args.eval_batch_size, tokenizer,
args.max_len, args.max_target_len)
print('dev:', scores)
save_dataset(path_save_result, '/dev.json', results_dev)
scores, results_test = evaluate(model, test_examples, args.eval_batch_size, tokenizer,
args.max_len, args.max_target_len)
print('test:', scores)
save_dataset(path_save_result, '/test.json', results_test)
exit(0)
warm_up_ratio = 0.1
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=0.001)
t_total = args.epoch_num * (len(train_examples) // train_batch_size)
scheduler = get_linear_schedule_with_warmup(optimizer=optimizer,
num_warmup_steps=int(warm_up_ratio * (t_total)),
num_training_steps=t_total)
step_count, step_all, early_stop = 0, 0, 0
best_dev_rouge_score, best_test_rouge_score = 0, 0
best_test_acc = 0
best_dev_acc = 0
best_dev_result, best_test_result = None, None
if args.init_checkpoint is not None:
scores_dev, results_dev, readable_results_dev = evaluate(model, dev_examples, args.eval_batch_size, tokenizer,
args.max_len, args.max_target_len)
scores = sum([scores_dev[key] for key in scores_dev.keys()])
print('scores_dev:', scores_dev)
best_dev_acc = scores
for epoch in range(args.epoch_num):
tr_loss, nb_tr_steps = 0, 0.1
early_stop += 1
order = list(range(len(train_examples)))
random.seed(args.seed + epoch)
random.shuffle(order)
model.train()
step_count = len(train_examples) // train_batch_size
if step_count * train_batch_size < len(train_examples):
step_count += 1
step_trange = trange(step_count)
for step in step_trange:
step_all += 1
beg_index = step * train_batch_size
end_index = min((step + 1) * train_batch_size, len(train_examples))
order_index = order[beg_index:end_index]
batch_example = [train_examples[index] for index in order_index]
input_ids, input_masks, labels = get_input_feature(batch_example, tokenizer, args.max_len)
output = model(input_ids=input_ids, attention_mask=input_masks, labels=labels)
loss = output.loss
# loss = loss.mean()
tr_loss += loss.item()
nb_tr_steps += 1
loss = loss / args.ga
loss.backward()
if (step + 1) % args.ga == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
loss_show = ' Epoch:' + str(epoch) + " loss:" + str(
round(tr_loss / nb_tr_steps, 4)) + f" lr:{'%.2E' % scheduler.get_last_lr()[0]}"
step_trange.set_postfix_str(loss_show)
# if epoch >= 16:
if epoch >= args.acc_epoch:
scores_dev, results_dev = evaluate(model, dev_examples, args.eval_batch_size,
tokenizer, args.max_len,args.max_target_len)
print('dev:', scores_dev)
scores = sum([scores_dev[key] for key in scores_dev.keys()])
if scores > best_dev_acc:
best_dev_acc = scores
print('save new best')
save_model(output_model_path, model, optimizer)
print('best_dev_result:', best_dev_result)
print('best_test_result:', best_test_result)
print(path_save_result)
###############################
init_checkpoint = f'{output_model_path}/pytorch_model.bin'
checkpoint = torch.load(init_checkpoint, map_location='cpu')
model_dict = checkpoint['model_state_dict']
model.load_state_dict(model_dict, False)
print('init from:', init_checkpoint)
scores, results_dev = evaluate(model, dev_examples, args.eval_batch_size, tokenizer, args.max_len, args.max_target_len)
print('dev:', scores)
save_dataset(path_save_result, '/dev.json', results_dev)
scores, results_test = evaluate(model, test_examples, args.eval_batch_size, tokenizer, args.max_len, args.max_target_len)
print('test:', scores)
save_dataset(path_save_result, '/test.json', results_test)