forked from nod-ai/transformer-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpt2_tester.py
427 lines (356 loc) · 19 KB
/
gpt2_tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
# This script helps evaluation of GPT-2 model.
import os
import logging
import torch
import random
import numpy
import time
import timeit
import math
import statistics
from gpt2_helper import Gpt2Helper, Gpt2Inputs
from benchmark_helper import Precision
logger = logging.getLogger(__name__)
class Gpt2Metric:
def __init__(self, treatment_name, baseline_name='Torch', top_k=20):
assert top_k > 1 and top_k <= 100
self.baseline = baseline_name
self.treatment = treatment_name
self.name: str = f"{treatment_name} vs {baseline_name}"
self.top_k = top_k
self.top_1_error: int = 0
self.top_k_error: int = 0
self.total_samples: int = 0
self.max_logits_diff: float = 0 # for non-empty past state
self.max_logits_diff_no_past: float = 0 # for empty past state
self.batch_top1_error: torch.FloatTensor = None # top 1 error for current batch
self.batch_topk_error: torch.FloatTensor = None # top k error for current batch
self.seq_len_latency = {}
def print(self):
if self.baseline != self.treatment:
print("---")
print(f"Metrics for {self.treatment} (baseline={self.baseline}):")
if self.total_samples > 0:
top_1_error_rate = 100.0 * self.top_1_error / self.total_samples
top_k_error_rate = 100.0 * self.top_k_error / self.total_samples
print(
f"Total={self.total_samples} Top1Error={self.top_1_error} ({top_1_error_rate:.2f}%) Top{self.top_k}Error={self.top_k_error} ({top_k_error_rate:.2f}%)"
)
print("Max logits diffs:")
print(f"\twith past = {self.max_logits_diff:.6f}")
print(f"\tempty past = {self.max_logits_diff_no_past:.6f}")
else:
print(f"Metrics for {self.treatment} (baseline):")
if self.seq_len_latency:
print("Past sequence length range and average latency:")
total = 0
count = 0
for key in sorted(self.seq_len_latency.keys()):
average = statistics.mean(self.seq_len_latency[key]) * 1000.0
if key == 0:
print("\t{}: \t{:.2f} ms".format(key, average))
else:
print("\t[{}, {}]:\t{:.2f} ms".format(2**key, 2**(key + 1) - 1, average))
total += average * len(self.seq_len_latency[key])
count += len(self.seq_len_latency[key])
print("Average Latency: {:.2f} ms".format(total / count))
def diff_logits(self, baseline_logits, treatment_logits, is_empty_past: bool):
diff = (baseline_logits - treatment_logits).abs().max()
if is_empty_past:
self.max_logits_diff_no_past = max(self.max_logits_diff_no_past, diff)
else:
self.max_logits_diff = max(self.max_logits_diff, diff)
return diff
def start_batch(self, batch_size: int):
self.total_samples += batch_size
self.batch_top1_error = torch.zeros((batch_size, 1), dtype=torch.bool)
self.batch_topk_error = torch.zeros((batch_size, 1), dtype=torch.bool)
def eval_batch(self, baseline, treatment, past_seq_len, verbose=True):
self._eval_topk(baseline.top_1_tokens, treatment.top_1_tokens, 1, verbose)
self._eval_topk(baseline.top_k_tokens, treatment.top_k_tokens, self.top_k, verbose)
max_diff = self.diff_logits(baseline.logits, treatment.logits, past_seq_len == 0)
if verbose:
print(f"Max logits diffs of {self.name}: {max_diff}")
def _eval_topk(self, baseline_topk, treatment_topk, top_k, verbose=True):
if not torch.all(torch.eq(baseline_topk, treatment_topk)):
if top_k == 1:
if verbose:
print(f"Generated tokens not matched for {self.name}")
self.batch_top1_error |= torch.eq(baseline_topk, treatment_topk).logical_not()
else:
if verbose:
print(
f"Top {top_k} tokens not matched for {self.name}. This will lead to wrong beam search results")
self.batch_topk_error |= (torch.eq(baseline_topk, treatment_topk).logical_not().sum(1).unsqueeze(dim=1)
> 0)
def end_batch(self):
self.top_1_error += self.batch_top1_error.sum()
self.top_k_error += self.batch_topk_error.sum()
def add_latency(self, past_seq_len, latency):
key = int(math.log2(past_seq_len)) + 1 if past_seq_len > 0 else 0
if key not in self.seq_len_latency:
self.seq_len_latency[key] = []
self.seq_len_latency[key].append(latency)
class Gpt2Tester:
def __init__(self,
input_ids,
position_ids,
attention_mask,
num_attention_heads,
hidden_size,
num_layer,
device,
is_fp16=False,
top_k=20,
top_k_required_order=False):
self.batch_size = input_ids.shape[0]
self.input_length = input_ids.shape[1]
self.n_layer = num_layer
self.input_ids = input_ids
self.position_ids = position_ids
self.attention_mask = attention_mask
self.has_position_ids = position_ids is not None
self.has_attention_mask = attention_mask is not None
# Emtpy past state for first inference
self.past = []
past_shape = [2, self.batch_size, num_attention_heads, 0, hidden_size // num_attention_heads]
for i in range(num_layer):
empty_past = torch.empty(past_shape).type(torch.float16 if is_fp16 else torch.float32)
self.past.append(empty_past.to(device))
self.logits = None
self.top_1_tokens = None
self.top_k_tokens = None
self.top_k = top_k
self.top_k_required_order = top_k_required_order
def get_inputs(self) -> Gpt2Inputs:
return Gpt2Inputs(self.input_ids, self.position_ids, self.attention_mask, self.past)
def save_test_data(self, session, output, save_test_data_dir, test_case_id):
from onnx import numpy_helper
path = os.path.join(save_test_data_dir, 'test_data_set_' + str(test_case_id))
if os.path.exists(path):
print(f"Directory {path} existed. Skip saving test data")
return
os.makedirs(path, exist_ok=True)
def add_tensor(input_tensors, torch_tensor, name):
input_tensors.append(numpy_helper.from_array(torch_tensor.clone().cpu().numpy(), name))
input_tensors = []
add_tensor(input_tensors, self.input_ids, "input_ids")
if self.has_position_ids:
add_tensor(input_tensors, self.position_ids, "position_ids")
if self.has_attention_mask:
add_tensor(input_tensors, self.attention_mask, "attention_mask")
for i in range(self.n_layer):
add_tensor(input_tensors, self.past[i], 'past_' + str(i))
for i, tensor in enumerate(input_tensors):
with open(os.path.join(path, 'input_{}.pb'.format(i)), 'wb') as f:
f.write(tensor.SerializeToString())
output_names = [output.name for output in session.get_outputs()]
for i, name in enumerate(output_names):
tensor = numpy_helper.from_array(
output[i] if isinstance(output[i], numpy.ndarray) else output[i].clone().cpu().numpy())
with open(os.path.join(path, 'output_{}.pb'.format(i)), 'wb') as f:
f.write(tensor.SerializeToString())
print(f"Test data saved to directory {path}")
def update(self, output, step, device):
"""
Update the inputs for next inference.
"""
self.logits = torch.from_numpy(output[0]) if isinstance(output[0],
numpy.ndarray) else output[0].clone().detach().cpu()
self.top_1_tokens = Gpt2Tester.predict_next_token(self.logits)
self.top_k_tokens = Gpt2Tester.predict_next_token(self.logits, self.top_k, self.top_k_required_order)
self.input_ids = self.top_1_tokens.clone().detach().reshape([self.batch_size, 1]).to(device)
if self.has_position_ids:
self.position_ids = torch.tensor([self.input_length + step - 1]).unsqueeze(0).repeat(self.batch_size,
1).to(device)
if self.has_attention_mask:
self.attention_mask = torch.cat(
[self.attention_mask,
torch.ones([self.batch_size, 1]).type_as(self.attention_mask)], 1).to(device)
self.past = []
if isinstance(output[1], tuple): # past in torch output is tuple
self.past = list(output[1])
else:
for i in range(self.n_layer):
past_i = torch.from_numpy(output[i + 1]) if isinstance(
output[i + 1], numpy.ndarray) else output[i + 1].clone().detach()
self.past.append(past_i.to(device))
def diff(self, baseline):
"""
Compare inputs and logits output.
"""
print("start diff...")
if self.logits is not None:
max_io_diff = (self.logits - baseline.logits).abs().max()
if max_io_diff > 1e-4:
print(f'Max logits difference is too large: {max_io_diff}')
if not torch.all(self.input_ids == baseline.input_ids):
print('Input_ids is different', self.input_ids, baseline.input_ids)
if self.has_position_ids:
if not torch.all(self.position_ids == baseline.position_ids):
print('position_ids is different', self.position_ids, baseline.position_ids)
if self.has_attention_mask:
if not torch.all(self.attention_mask == baseline.attention_mask):
print('attention_mask is different', self.attention_mask, baseline.attention_mask)
assert len(self.past) == len(baseline.past)
for i, past_i in enumerate(self.past):
assert past_i.shape == baseline.past[i].shape
if past_i.nelement() > 0:
max_past_diff = (past_i - baseline.past[i]).abs().max()
if max_past_diff > 1e-4:
print(f"max_past_diff[{i}]={max_past_diff}")
@staticmethod
def predict_next_token(logits, top_k=1, required_order=False):
"""
Get top k topkens based on logits.
"""
# logits has shape (batch_size, seq_len, vocab_size)
# last token logits has shape (batch_size, vocab_size)
lastTokenLogits = logits[:, -1]
if top_k == 1:
generatedTokens = torch.argmax(lastTokenLogits, 1, True)
return generatedTokens
else:
topk = torch.argsort(lastTokenLogits, -1, descending=True)[:, :top_k]
if not required_order:
sorted_topk, _ = topk.sort()
return sorted_topk
return topk
@staticmethod
def diff_present(onnx_output, onnx_io_output, n_layer):
"""
Compare the present outputs of two outputs from ONNX Runtime.
"""
present_diff_max = []
for i in range(n_layer):
onnx_present_i = torch.from_numpy(onnx_output[i + 1]) if isinstance(onnx_output[i + 1],
numpy.ndarray) else onnx_output[i + 1]
onnx_io_present_i = torch.from_numpy(onnx_io_output[i + 1]) if isinstance(
onnx_io_output[i + 1], numpy.ndarray) else onnx_io_output[i + 1]
max_diff = (onnx_present_i - onnx_io_present_i).abs().max()
present_diff_max.append(max_diff)
print(f"present_diff_max={present_diff_max}")
@staticmethod
def is_quantized_onnx_model(onnx_model_path):
"""
Returns True if the ONNX model is quantized.
"""
from onnx import load
model = load(onnx_model_path)
from onnxruntime.quantization.quantize import __producer__ as quantize_producer
return model.producer_name == quantize_producer
@staticmethod
def test_generation(session,
model,
device,
test_inputs,
precision=Precision.FLOAT32,
model_class='Gpt2LMHeadModel',
top_k=20,
top_k_no_order=True,
max_steps=24,
max_inputs=0,
verbose=False,
save_test_data=0,
save_test_data_dir='.'):
"""
Test Generation using greedy beam search (without sampling) to compare PyTorch and ONNX model.
It will print top 1 and top k errors on the given test inputs.
"""
print(
f"start test generation: (top_k={top_k} top_k_no_order={top_k_no_order} max_steps={max_steps} test_inputs={len(test_inputs)} max_inputs={max_inputs})"
)
n_layer = model.config.n_layer
n_head = model.config.n_head
n_embd = model.config.n_embd
eos_token_id = model.config.eos_token_id
test_data_saved = 0
is_float16 = (precision == Precision.FLOAT16)
if is_float16:
assert 'float16' in session.get_outputs()[0].type
# We will still use fp32 torch model as baseline when onnx model if fp16
model.eval().to(device)
# Allocate initial buffers for IO Binding of ONNX Runtimne. The buffer size will automatically increase later.
init_output_shapes = Gpt2Helper.get_output_shapes(batch_size=4,
past_sequence_length=128,
sequence_length=32,
config=model.config,
model_class=model_class)
output_buffers = Gpt2Helper.get_output_buffers(init_output_shapes, device, is_float16=is_float16)
baseline_name = 'Torch'
treatment_name = 'Quantized Onnx' if precision == Precision.INT8 else "Onnx"
torch_metric = Gpt2Metric(baseline_name, baseline_name, top_k)
onnx_metric = Gpt2Metric(treatment_name, baseline_name, top_k)
onnx_io_metric = Gpt2Metric(treatment_name + ' with IO Binding', baseline_name, top_k)
for i, inputs in enumerate(test_inputs):
if (max_inputs > 0 and i == max_inputs):
break
if i % 10 == 0:
print(f"{i}")
input_ids = inputs["input_ids"]
position_ids = inputs["position_ids"] if "position_ids" in inputs else None
attention_mask = inputs["attention_mask"] if "attention_mask" in inputs else None
onnx_runner = Gpt2Tester(input_ids, position_ids, attention_mask, n_head, n_embd, n_layer, device,
is_float16, top_k, not top_k_no_order)
onnx_io_runner = Gpt2Tester(input_ids, position_ids, attention_mask, n_head, n_embd, n_layer, device,
is_float16, top_k, not top_k_no_order)
torch_runner = Gpt2Tester(input_ids, position_ids, attention_mask, n_head, n_embd, n_layer, device, False,
top_k, not top_k_no_order) # Torch model baseline is fp32
batch_size = torch_runner.batch_size
onnx_metric.start_batch(batch_size)
onnx_io_metric.start_batch(batch_size)
with torch.no_grad():
done = torch.zeros(batch_size, dtype=torch.bool)
for step in range(max_steps):
seq_len = list(onnx_runner.input_ids.size())[1]
past_seq_len = list(onnx_runner.past[0].size())[3]
start_time = timeit.default_timer()
pytorch_output = Gpt2Helper.pytorch_inference(model, torch_runner.get_inputs())
torch_metric.add_latency(past_seq_len, timeit.default_timer() - start_time)
torch_runner.update(pytorch_output, step, device)
onnx_output, avg_latency_ms = Gpt2Helper.onnxruntime_inference(session,
onnx_runner.get_inputs(),
total_runs=1)
onnx_metric.add_latency(past_seq_len, avg_latency_ms / 1000.0)
onnx_runner.update(onnx_output, step, device)
output_shapes = Gpt2Helper.get_output_shapes(batch_size,
past_seq_len,
seq_len,
model.config,
model_class=model_class)
Gpt2Helper.auto_increase_buffer_size(output_buffers, output_shapes)
onnx_io_output, avg_latency_ms = Gpt2Helper.onnxruntime_inference_with_binded_io(
session,
onnx_io_runner.get_inputs(),
output_buffers,
output_shapes,
total_runs=1,
return_numpy=False,
include_copy_output_latency=True)
onnx_io_metric.add_latency(past_seq_len, avg_latency_ms / 1000.0)
if test_data_saved < save_test_data:
onnx_io_runner.save_test_data(session, onnx_io_output, save_test_data_dir, test_data_saved)
test_data_saved += 1
onnx_io_runner.update(onnx_io_output, step, device)
if verbose:
onnx_runner.diff(onnx_io_runner)
Gpt2Tester.diff_present(onnx_output, onnx_io_output, n_layer)
print("Top 1 tokens:")
print("\tTorch", torch_runner.top_1_tokens)
print("\tONNX", onnx_runner.top_1_tokens)
print("\tONNX with IO binding", onnx_io_runner.top_1_tokens)
onnx_metric.eval_batch(torch_runner, onnx_runner, past_seq_len, verbose=verbose)
onnx_io_metric.eval_batch(torch_runner, onnx_io_runner, past_seq_len, verbose=verbose)
done = done | (torch_runner.top_1_tokens == eos_token_id).any()
if torch.all(done):
break
onnx_metric.end_batch()
onnx_io_metric.end_batch()
torch_metric.print()
onnx_metric.print()
onnx_io_metric.print()