-
Notifications
You must be signed in to change notification settings - Fork 4
/
computesensitivitymatrices.py
executable file
·386 lines (304 loc) · 10.6 KB
/
computesensitivitymatrices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#!/usr/bin/env python
'''
File: bl2d.py
Created on 21 july 2020
@author: Cedric Content
@contact: cedric.content@onera.fr
@organization: ONERA - DAAA
@summary: This file is the main file of the program. It contains the
routine "main" and other related routines.
'''
import BROADCAST_npz_sens as toy
import numpy as _np
# FORTRAN
import srcfv.f_geom as f_geom
import srcfv.f_bnd as f_bnd
import srcfv.f_sch as f_sch
import srcfv.f_lhs as f_lhs
import srcfv.f_lin as f_lin
# import srcfv.f_adj as f_adj
import srcfv.f_norm as f_norm
import misc.f_misc as f_misc
from petsc4py import PETSc
from mpi4py import MPI
import misc.PETSc_func as pet
import resolvent_all as resol
import os
import sys
import timeit
######################### CARTE ####################
out_dir = './Wksp/firstmackmode/'
treename = './Wksp/dnc_5/tree300x150'
## 2nd Mack mode
# fileforc = './Wksp/secondmackmode/forcing_atcenter_eig_om2.3e+01_be0.0_n0'
# fileresp = './Wksp/secondmackmode/response_atcenter_eig_om2.3e+01_be0.0_n0'
## 1st Mack mode
fileforc = './Wksp/firstmackmode/forcing_atcenter_eig_om3.0_be1.2e+01_n0'
fileresp = './Wksp/firstmackmode/response_atcenter_eig_om3.0_be1.2e+01_n0'
3Dmode = True #True if oblique first Mack mode, False if 2D second Mack mode
## Frequency: omega mode for resolvent operator
# omega = 23.e-5 #2nd Mack mode
omega = 3.e-5 #1st Mack mode
## Only for 3D modes, spanwise wavenumber (beta)
if 3Dmode:
wave = 12.e-5 #1st Mack mode
## Squarred optimal gain mu^2
# mu2 = 17945440.70685651**2 #for 2nd Mack mode (adiab)
mu2 = 1.15292235e+08**2 #for 1st Mack mode (adiab)
#################### MATRICES CONSTUCTION ########################
# Compute dR/dp
tinit = timeit.time.time()
toy.dRdp_fromNPZtree(treename, out_dir = out_dir)
tend = timeit.time.time()
tlaps = tend-tinit
print("Time Elapsed 0 = ", tlaps)
## Compute dQchu/dq
tinit = timeit.time.time()
toy.dQchudq_fromNPZtree(treename, fileforc, fileresp, out_dir = out_dir)
tend = timeit.time.time()
tlaps = tend-tinit
print("Time Elapsed 1 = ", tlaps)
## Compute H=dA/dq
tinit = timeit.time.time()
toy.dAdq_fromNPZtree(treename, fileresp, out_dir = out_dir)
tend = timeit.time.time()
tlaps = tend-tinit
print("Time Elapsed 2 = ", tlaps)
## Only for 3D modes
if 3Dmode:
tinit = timeit.time.time()
toy.dAdq3D_fromNPZtree(treename, fileresp, out_dir = out_dir)
tend = timeit.time.time()
tlaps = tend-tinit
print("Time Elapsed 2.5 = ", tlaps)
# Compute \tilde{H}=dA/dp
tinit = timeit.time.time()
toy.dAdp_fromNPZtree(treename, fileresp, out_dir = out_dir)
tend = timeit.time.time()
tlaps = tend-tinit
print("Time Elapsed 3 = ", tlaps)
## Only for 3D modes
if 3Dmode:
tinit = timeit.time.time()
toy.dAdp3D_fromNPZtree(treename, fileresp, out_dir = out_dir)
tend = timeit.time.time()
tlaps = tend-tinit
print("Time Elapsed 3.5 = ", tlaps)
#################### MATRIX-VECTOR PRODUCTs ########################
os.system('mkdir -p %s' % out_dir)
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
dic = _np.load(treename+".npz")
im = dic['im']
jm = dic['jm']
gh = dic['gh']
xc = dic['xc']
yc = dic['yc']
vol = dic['vol']
gam = dic['Gamma']
mach = dic['Mach']
w = dic['FlowSolutionEndOfRun']
## Construct the Hessian dA/dq
IAh = dic['IAdAdq']
JAh = dic['JAdAdq']
Jach = dic['AijdAdq']
H = pet.createMatPetscCSR(IAh, JAh, Jach, im*jm*5, im*jm*5, 5*(2*gh+1)**2)
## Only for 3D modes
if 3Dmode:
IAdz = dic['IAdAdqdz']
JAdz = dic['JAdAdqdz']
Jacdz = dic['AijdAdqdz']
IAdzz = dic['IAdAdqdz2']
JAdzz = dic['JAdAdqdz2']
Jacdzz = dic['AijdAdqdz2']
Hdz = pet.createMatPetscCSR(IAdz, JAdz, Jacdz, im*jm*5, im*jm*5, 5*(2*gh+1)**2)
Hdzz = pet.createMatPetscCSR(IAdzz, JAdzz, Jacdzz, im*jm*5, im*jm*5, 5*(2*gh+1)**2)
H = H + wave*1.j*Hdz - wave**2*Hdzz
## Load optimal response
import restart_init as ri
xc_tmp, yc_tmp, ro, rou, rov, row, roe = ri.read_init(fileresp+ '_real.dat')
xc_tmp, yc_tmp, roi, roui, rovi, rowi, roei = ri.read_init(fileresp+ '_imag.dat')
wmoder = _np.zeros((im, jm,5), order='F')
wmoder[:,:,0] = ro
wmoder[:,:,1] = rou
wmoder[:,:,2] = rov
wmoder[:,:,3] = row
wmoder[:,:,4] = roe
wmodei = _np.zeros((im, jm,5), order='F')
wmodei[:,:,0] = roi
wmodei[:,:,1] = roui
wmodei[:,:,2] = rovi
wmodei[:,:,3] = rowi
wmodei[:,:,4] = roei
response = _np.ravel(wmoder + 1.j * wmodei)
## Load optimal forcing
xc_tmp, yc_tmp, ro, rou, rov, row, roe = ri.read_init(fileforc+ '_real.dat')
xc_tmp, yc_tmp, roi, roui, rovi, rowi, roei = ri.read_init(fileforc+ '_imag.dat')
wforcr = _np.zeros((im, jm,5), order='F')
wforcr[:,:,0] = ro
wforcr[:,:,1] = rou
wforcr[:,:,2] = rov
wforcr[:,:,3] = row
wforcr[:,:,4] = roe
wforci = _np.zeros((im, jm,5), order='F')
wforci[:,:,0] = roi
wforci[:,:,1] = roui
wforci[:,:,2] = rovi
wforci[:,:,3] = rowi
wforci[:,:,4] = roei
forcing = _np.ravel(wforcr + 1.j * wforci)
## Create Identity matrix for resolvent operator
Id = pet.createMatIDPetsc(im*jm*5, im*jm*5)
## Construct the Jacobian A=dR/dq
IA = dic['IA']
JA = dic['JA']
Jac = dic['Aij']
Jacs = pet.createMatPetscCSR(IA, JA, Jac, im*jm*5, im*jm*5, 5*(2*gh+1)**2)
Jacs3D = Jacs
## Only for 3D modes
if 3Dmode:
IAdz = dic['IAdz']
JAdz = dic['JAdz']
Jacdz = dic['Aijdz']
IAdzz = dic['IAdz2']
JAdzz = dic['JAdz2']
Jacdzz = dic['Aijdz2']
Jacsdz = pet.createMatPetscCSR(IAdz, JAdz, Jacdz, im*jm*5, im*jm*5, 5*(2*gh+1)**2)
Jacsdzz = pet.createMatPetscCSR(IAdzz, JAdzz, Jacdzz, im*jm*5, im*jm*5, 5*(2*gh+1)**2)
Jacs3D = Jacs - wave*1.j*Jacsdz - wave**2*Jacsdzz #conjugated
kspA = pet.kspLUPetsc(Jacs)
## Construct dR/dp
IAdr = dic['IAdRdp']
JAdr = dic['JAdRdp']
Jacdr = dic['AijdRdp']
dRdp = pet.createMatPetscCSR(IAdr, JAdr, Jacdr, im*jm*5, im, im)
## Construct Chu energy matrix
Qchu = resol.computeQ_Echu(w[gh:-gh,gh:-gh,:], vol[gh:-gh,gh:-gh], gam, mach)
kspQ = pet.kspLUPetsc(Qchu)
## Construct derivative of Chu with response and forcing
IAdcqdq = dic['IAdChuqdq']
JAdcqdq = dic['JAdChuqdq']
Jacdcqdq = dic['AijdChuqdq']
IAdcfdq = dic['IAdChufdq']
JAdcfdq = dic['JAdChufdq']
Jacdcfdq = dic['AijdChufdq']
dChuq = pet.createMatPetscCSR(IAdcqdq, JAdcqdq, Jacdcqdq, im*jm*5, im*jm*5, 5)
dChuf = pet.createMatPetscCSR(IAdcfdq, JAdcfdq, Jacdcfdq, im*jm*5, im*jm*5, 5)
print("Matrices loaded, computation of sensitivity...", flush=True)
## Construct conjugate resolvent operator
Rconjinv = -1.j*omega*Id - Jacs3D
kspR = pet.kspLUPetsc(Rconjinv)
##Initialise vectors in PETSc format
a, b = H.getVecs()
c, d = H.getVecs()
e, f = H.getVecs()
g, h = dRdp.getVecs()
rangeVec = a.getOwnershipRange()
for k in range(rangeVec[0],rangeVec[1]):
a[k] = response[k]
a.assemble()
rangeVec = b.getOwnershipRange()
for k in range(rangeVec[0],rangeVec[1]):
b[k] = forcing[k]
b.assemble()
## Compute the first term with the Hessian for sensitivity to base-flow
## with P restriction
Qchu.mult(a,c)
kspR.solveTranspose(c,d)
d.conjugate()
H.multTranspose(d,e)
e.conjugate()
## without P restriction
# Qchu.mult(b,c)
# c.conjugate()
# H.multTranspose(c,e)
# e.conjugate()
## Compute both terms with Chu derivative for sensitivity to base-flow
a.conjugate()
dChuq.multTranspose(a,c)
a.conjugate()
c.conjugate()
b.conjugate()
dChuf.multTranspose(b,d)
b.conjugate()
d.conjugate()
## Sum the three terms to get sensitivity to base-flow
f = 2./mu2 * e + 1./mu2 * c - d #with P restriction
# f = 2. * e + 1./mu2 * c - d #without P restriction
## Normalise with Chu energy
kspQ.solve(f,c)
## Save sensitivity to base-flow (grad_q mu^2/(2mu^2))
sensb = pet.gatherVector2ArrayPetsc(c, MPI.COMM_WORLD, broadcast=True)
sensb = _np.reshape(_np.real(sensb), (im,jm,5))
filenamesensb = out_dir + 'sensitivitytobaseflow.dat'
# filenamesensb = out_dir + 'sensitivitytobaseflowNoRestrict.dat'
toy.__writestate_center_gh(filenamesensb, im, jm, sensb, xc[gh:-gh,gh:-gh], yc[gh:-gh,gh:-gh])
print("...Sensitivity to base-flow written...", flush=True)
## Compute sensitivity to steady forcing
f.conjugate()
kspA.solveTranspose(f,d)
d.conjugate()
## Normalise with Chu energy
kspQ.solve(d,e)
## Save sensitivity to steady forcing (grad_f mu^2/(2mu^2))
sensf = pet.gatherVector2ArrayPetsc(e, MPI.COMM_WORLD, broadcast=True)
sensf = _np.reshape(_np.real(sensf), (im,jm,5))
filenamesensf = out_dir + 'sensitivitytosteadyforcing.dat'
# filenamesensf = out_dir + 'sensitivitytosteadyforcingNoRestrict.dat'
toy.__writestate_center_gh(filenamesensf, im, jm, sensf, xc[gh:-gh,gh:-gh], yc[gh:-gh,gh:-gh])
print("...Sensitivity to steady forcing written...", flush=True)
###################################################################################################
## Compute the first term (var. from base-flow) for sensitivity to flow parameter p
dRdp.multTranspose(d,g)
## Save the first term for sensitivity to flow parameter p (grad_p mu^2/(2mu^2) from base-flow var.)
sensp = pet.gatherVector2ArrayPetsc(g, MPI.COMM_WORLD, broadcast=True)
filenamesensp = out_dir + 'sensitivitytowalltempbsf.dat'
# filenamesensp = out_dir + 'sensitivitytowalltempbsfNoRestrict.dat'
f_out = open(filenamesensp , 'w')
f_out.write('VARIABLES= "X" "Twall" \n')
for i in range(im):
f_out.write(str(xc[gh+i,0]) + ' ' + str(_np.real(sensp[i])) + '\n')
f_out.close()
## Construct the second Hessian dA/dp
IAhp = dic['IAdAdp']
JAhp = dic['JAdAdp']
Jachp = dic['AijdAdp']
Hp = pet.createMatPetscCSR(IAhp, JAhp, Jachp, im*jm*5, im, im)
## Only for 3D modes
if 3Dmode:
IAdz = dic['IAdAdpdz']
JAdz = dic['JAdAdpdz']
Jacdz = dic['AijdAdpdz']
IAdzz = dic['IAdAdpdz2']
JAdzz = dic['JAdAdpdz2']
Jacdzz = dic['AijdAdpdz2']
Hpdz = pet.createMatPetscCSR(IAdz, JAdz, Jacdz, im*jm*5, im, im)
Hpdzz = pet.createMatPetscCSR(IAdzz, JAdzz, Jacdzz, im*jm*5, im, im)
Hp = Hp - wave*1.j*Hpdz + wave**2*Hpdzz #good
## Compute the second term (var. from jacobian) for sensitivity to flow parameter p
k, l = Hp.getVecs()
m, n = Hp.getVecs()
## with P restriction
Qchu.mult(a,c)
kspR.solveTranspose(c,d)
d.conjugate()
# Hp.multTranspose(d,k)
Hp.multTranspose(-d,k)
k.conjugate()
## without P restriction
# Qchu.mult(b,c)
# c.conjugate()
# Hp.multTranspose(-c,k)
# k.conjugate()
m = 2./mu2 * k #with P restriction
# m = 2. * k #without P restriction
## Save the second term for sensitivity to flow parameter p (grad_p mu^2/(2mu^2) from jacobian var.)
sensp2 = pet.gatherVector2ArrayPetsc(m, MPI.COMM_WORLD, broadcast=True)
filenamesensp2 = out_dir + 'sensitivitytowalltempjac.dat'
# filenamesensp2 = out_dir + 'sensitivitytowalltempjacNoRestrict.dat'
f_out = open(filenamesensp2 , 'w')
f_out.write('VARIABLES= "X" "Twall" \n')
for i in range(im):
f_out.write(str(xc[gh+i,0]) + ' ' + str(_np.real(sensp2[i])) + '\n')
f_out.close()
print("...Sensitivity to flow parameter written.", flush=True)