-
Notifications
You must be signed in to change notification settings - Fork 0
/
trojan_classification.R
221 lines (164 loc) · 8.26 KB
/
trojan_classification.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Import necessary libraries
library(C50)
library(rpart)
library(gmodels)
library(caret)
library(neuralnet)
library(Amelia)
library(pscl)
library(ROCR)
set.seed(123)
Trojan = read.csv("Trojan_Detection.csv")
# Rename Class column to Traffic.Type
names(Trojan)[names(Trojan) == "Class"] = "Traffic.Type"
# Drop X & Flow.ID
Trojan = Trojan[-c(1, 2)]
#Convert Source.IP & Port, Destination.IP & Port, Timestamp to numeric factors
Trojan$Source.IP = as.numeric(factor(Trojan$Source.IP))
Trojan$Source.Port = as.numeric(factor(Trojan$Source.Port))
Trojan$Destination.IP = as.numeric(factor(Trojan$Destination.IP))
Trojan$Destination.Port = as.numeric(factor(Trojan$Destination.Port))
Trojan$Timestamp = as.numeric(factor(Trojan$Timestamp))
# Create sample data frame from larger set
Trojan.Sample = Trojan[sample(nrow(Trojan), 800), ]
Trojan.Sample$Traffic.Type = factor(Trojan.Sample$Traffic.Type,
levels = c("Benign", "Trojan"))
str(Trojan.Sample)
# Normalize & clean Trojan.Sample data set
Normalize = function(x) {
return ((x - min(x)) / (max(x) - min(x)))}
# Test Normalize function
Normalize(c(1, 2, 3, 4, 5))
Normalize(c(10, 20, 30, 40, 50))
Normalize(c(0,0,0,1,1))
Trojan.Normalized = as.data.frame(lapply(Trojan.Sample[1:83], Normalize))
Trojan.Cleaned = Trojan.Normalized[ , colSums(is.na(Trojan.Normalized)) == 0]
Trojan.Cleaned[72] <- Trojan.Sample[84]
# Test Normalize function on Trojan column
summary(Trojan.Cleaned$Flow.Duration)
# Check ratio of outcome variable
table(Trojan.Cleaned$Traffic.Type)
round(prop.table(table(Trojan.Cleaned$Traffic.Type)) * 100, digits = 1)
# Look at two characteristics of the Trojan.Cleaned that might be predictors of Traffic.Type
summary(Trojan.Cleaned$Destination.IP)
summary(Trojan.Cleaned$Destination.Port)
set.seed(123)
Partition = sample(2, nrow(Trojan.Cleaned), replace=TRUE, prob=c(0.7, 0.3))
# Randomly sample training and testing data
Trojan.Cleaned.Train = Trojan.Cleaned[Partition==1,]
Trojan.Cleaned.Test = Trojan.Cleaned[Partition==2,]
# Return target variables
prop.table(table(Trojan.Cleaned.Train$Traffic.Type))
prop.table(table(Trojan.Cleaned.Test$Traffic.Type))
# We want to remove the Traffic.Type class from training but use it as our target variable
Trojan.Cleaned.Model <- C5.0(Trojan.Cleaned.Train[-72], as.factor(Trojan.Cleaned.Train$Traffic.Type))
# Display simple facts about the tree
Trojan.Cleaned.Model
# Display detailed information about the tree
summary(Trojan.Cleaned.Model)
# create a factor vector of predictions on test data
Trojan.Cleaned.Pred <- predict(Trojan.Cleaned.Model, Trojan.Cleaned.Test)
# cross tabulation of predicted versus actual classes
CrossTable(Trojan.Cleaned.Test$Traffic.Type, Trojan.Cleaned.Pred,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('Actual Traffic.Type', 'Predicted Traffic.Type'))
# Boosted decision tree with 10 trials
Trojan.Cleaned.Boost10 <- C5.0(Trojan.Cleaned.Train[-72], as.factor(Trojan.Cleaned.Train$Traffic.Type),
trials = 10)
Trojan.Cleaned.Boost10
summary(Trojan.Cleaned.Boost10)
Trojan.Cleaned.Boost.Pred10 <- predict(Trojan.Cleaned.Boost10, Trojan.Cleaned.Test)
CrossTable(Trojan.Cleaned.Test$Traffic.Type, Trojan.Cleaned.Boost.Pred10,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('actual Traffic.Type', 'predicted Traffic.Type'))
# Boosted with 9 iterations and rpart() hyper-parameter control
rpart.control(minsplit = 50, cp = 0.01)
Trojan.Cleaned.Boost9 <- C5.0(Trojan.Cleaned.Train[-72], as.factor(Trojan.Cleaned.Train$Traffic.Type),
trials = 9)
Trojan.Cleaned.Boost9
summary(Trojan.Cleaned.Boost9)
Trojan.Cleaned.Boost.Pred9 <- predict(Trojan.Cleaned.Boost9, Trojan.Cleaned.Test)
CrossTable(Trojan.Cleaned.Test$Traffic.Type, Trojan.Cleaned.Boost.Pred9,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('actual Traffic.Type', 'predicted Traffic.Type'))
# Create dimensions for a cost matrix
Matrix.Dimensions <- list(c("Benign", "Trojan"), c("Benign", "Trojan"))
names(Matrix.Dimensions) <- c("Predicted", "Actual")
Matrix.Dimensions
# Build the matrix
# If we say Trojan traffic costs the company 5 times as much as a false positive Benign traffic
# our penalty values will appear as such:
Error.Cost <- matrix(c(0, 1, 5, 0), nrow = 2, dimnames = Matrix.Dimensions)
Error.Cost
# We are saying there is no cost if the algorithm classifies correctly
# but a false negative costs 5 vs. a false positive costs 1.
# Apply the cost matrix to the tree
Trojan.Cleaned.Cost <- C5.0(Trojan.Cleaned.Train[-72], as.factor(Trojan.Cleaned.Train$Traffic.Type),
costs = Error.Cost)
Trojan.Cleaned.Cost.Pred <- predict(Trojan.Cleaned.Cost, Trojan.Cleaned.Test)
CrossTable(Trojan.Cleaned.Test$Traffic.Type, Trojan.Cleaned.Cost.Pred,
prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,
dnn = c('Actual Traffic.Type', 'Predicted Traffic.Type'))
confusionMatrix(Trojan.Cleaned.Cost.Pred, as.factor(Trojan.Cleaned.Test$Traffic.Type))
Trojan.Cleaned.Train$Traffic.Type[1:10]
# Set Traffic.Type to a numeric Factor (1 = Benign, 2 = Trojan)
Trojan.Cleaned.Train$Traffic.Type = as.numeric(factor(Trojan.Cleaned.Train$Traffic.Type))
Trojan.Cleaned.Test$Traffic.Type = as.numeric(factor(Trojan.Cleaned.Test$Traffic.Type))
Trojan.Cleaned.Train$Traffic.Type[1:10]
# simple ANN with only a single hidden neuron
set.seed(12345)
Trojan.Cleaned.ANN.Model <- neuralnet(formula = Traffic.Type ~.,
data = Trojan.Cleaned.Train)
# Visualize the network topology
plot(Trojan.Cleaned.ANN.Model)
ANN.Model.Results <- compute(Trojan.Cleaned.ANN.Model, Trojan.Cleaned.Test[1:71])
# Obtain predicted Traffic Types
Predicted.Traffic.Type <- ANN.Model.Results$net.result
# Examine the correlation between predicted and actual values
cor(Predicted.Traffic.Type, as.numeric(Trojan.Cleaned.Test$Traffic.Type))
# A more complex neural network topology with 5 hidden neurons
set.seed(12345)
Trojan.Cleaned.ANN.Model.2 <- neuralnet(formula = Traffic.Type ~.,
data = Trojan.Cleaned.Train, hidden = 5)
# Visualize the network topology
plot(Trojan.Cleaned.ANN.Model.2)
# Evaluate the results as before
ANN.Model.Results.2 <- compute(Trojan.Cleaned.ANN.Model.2, Trojan.Cleaned.Test[1:71])
Predicted.Traffic.Type.2 <- ANN.Model.Results.2$net.result
cor(Predicted.Traffic.Type.2, Trojan.Cleaned.Test$Traffic.Type)
set.seed(12345)
Trojan.Cleaned.ANN.Model.3 <- neuralnet(Traffic.Type ~ .,
data = Trojan.Cleaned.Train, hidden = c(3,2))
# Plot the network
plot(Trojan.Cleaned.ANN.Model.3)
# Evaluate the results as before
ANN.Model.Results.3 <- compute(Trojan.Cleaned.ANN.Model.3, Trojan.Cleaned.Test[1:71])
Predicted.Traffic.Type.3 <- ANN.Model.Results.3$net.result
cor(Predicted.Traffic.Type.3, Trojan.Cleaned.Test$Traffic.Type)
Trojan.Cleaned.Train$Traffic.Type[Trojan.Cleaned.Train$Traffic.Type == 2] <- 0
Trojan.Cleaned.Train$Traffic.Type[1:10]
Trojan.Cleaned.Test$Traffic.Type[Trojan.Cleaned.Test$Traffic.Type == 2] <- 0
Trojan.Cleaned.Test$Traffic.Type[1:10]
# Fit the model. We must specify the parameter family=binomial in the glm() function.
Trojan.Cleaned.GLM <- glm(Traffic.Type ~., family=binomial(link='logit'), data=Trojan.Cleaned.Train)
summary(Trojan.Cleaned.GLM)
anova(Trojan.Cleaned.GLM, test="Chisq")
pR2(Trojan.Cleaned.GLM)
Fitted.Results <- predict(Trojan.Cleaned.GLM, newdata=Trojan.Cleaned.Test[-72], type='response')
Fitted.Results <-ifelse(Fitted.Results>0.5, 1, 0)
Fitted.Results <- as.factor(Fitted.Results)
#Predicting using logistic model
str(Fitted.Results)
# Determine those mis-classified
misClassifiedError <- mean(Fitted.Results != Trojan.Cleaned.Test$Traffic.Type)
confusionMatrix(Fitted.Results, as.factor(Trojan.Cleaned.Test$Traffic.Type))
# Determine the accuracy of the model
print(paste('We find an accuracy of: ',1-misClassifiedError))
Predict <- predict(Trojan.Cleaned.GLM, newdata=Trojan.Cleaned.Test[-72], type="response")
Predictions <- prediction(Predict, Trojan.Cleaned.Test$Traffic.Type)
Performance <- performance(Predictions, measure = "tpr", x.measure = "fpr")
plot(Performance)
#Calculate the area under the curve (AUC)
auc <- performance(Predictions, measure = "auc")
auc <- auc@y.values[[1]]
auc