-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimpl.tex
33 lines (24 loc) · 988 Bytes
/
simpl.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
\begin{frame}[allowframebreaks]{Roots of $f^n(x)$}
% TODO show root tree?
$f(x) = (x-\gamma)^2+\gamma+m$
\begin{itemize}
\item The roots of $f(x)$ are $\gamma\pm\sqrt{-m-\gamma}$
\item If $\alpha$ is a root of $f^n(x)$, then $\gamma\pm\sqrt{\alpha-m-\gamma}$ are roots of $f^{n+1}(x)$
\end{itemize}
\begin{obs}
For $n>0$, the roots of $f^n(x)$ are, with $n$ radicals:
$$\gamma\pm\sqrt{-m\pm\sqrt{-m\pm\sqrt{-m\pm\ldots\sqrt{-m-\gamma}}}}$$
\end{obs}
\framebreak
\begin{obs}
For $n>0$, the roots of $f^n(x)$ are, with $n$ radicals:
$$\gamma\pm\sqrt{-m\pm\sqrt{-m\pm\sqrt{-m\pm\ldots\sqrt{-m-\gamma}}}}$$
\end{obs}
For notational convenience, define $\beta : \Sigma^* \rightarrow \CC$ where
\begin{align*}
\beta_{\epsilon} &= -\gamma \\
\beta_{0s} &= \sqrt{-m+\beta_s} \\
\beta_{1s} &= -\sqrt{-m+\beta_s}
\end{align*}
For $n>0$, the roots of $f^n(x)$ are exactly $\{\;\gamma+\beta_s\mid s\in\Sigma^n\;\}$.
\end{frame}