-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathmain_mtl.py
147 lines (116 loc) · 5.83 KB
/
main_mtl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Python version: 3.6
# import matplotlib
# matplotlib.use('Agg')
# import matplotlib.pyplot as plt
import copy
import os
import pickle
import itertools
import numpy as np
import pandas as pd
from tqdm import tqdm
from scipy.stats import mode
from torchvision import datasets, transforms, models
import torch
from torch import nn
from utils.train_utils import get_model, get_data
from utils.options import args_parser
from models.Update import LocalUpdateMTL
from models.test import test_img, test_img_local, test_img_local_all, test_img_avg_all, test_img_ensemble_all
import pdb
if __name__ == '__main__':
# parse args
args = args_parser()
args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu')
base_dir = './save/{}/{}_iid{}_num{}_C{}_le{}/shard{}/{}/'.format(
args.dataset, args.model, args.iid, args.num_users, args.frac, args.local_ep, args.shard_per_user, args.results_save)
base_save_dir = os.path.join(base_dir, 'mtl')
if not os.path.exists(base_save_dir):
os.makedirs(base_save_dir, exist_ok=True)
dataset_train, dataset_test, dict_users_train, dict_users_test = get_data(args)
dict_save_path = os.path.join(base_dir, 'dict_users.pkl')
with open(dict_save_path, 'rb') as handle:
dict_users_train, dict_users_test = pickle.load(handle)
# build model
net_glob = get_model(args)
net_glob.train()
print(net_glob)
net_glob.train()
total_num_layers = len(net_glob.weight_keys)
w_glob_keys = net_glob.weight_keys[total_num_layers - args.num_layers_keep:]
w_glob_keys = list(itertools.chain.from_iterable(w_glob_keys))
num_param_glob = 0
num_param_local = 0
for key in net_glob.state_dict().keys():
num_param_local += net_glob.state_dict()[key].numel()
if key in w_glob_keys:
num_param_glob += net_glob.state_dict()[key].numel()
percentage_param = 100 * float(num_param_glob) / num_param_local
print('# Params: {} (local), {} (global); Percentage {:.2f} ({}/{})'.format(
num_param_local, num_param_glob, percentage_param, num_param_glob, num_param_local))
# generate list of local models for each user
net_local_list = []
for user_ix in range(args.num_users):
net_local_list.append(copy.deepcopy(net_glob))
criterion = nn.CrossEntropyLoss()
# training
results_save_path = os.path.join(base_save_dir, 'results.csv')
loss_train = []
net_best = None
best_acc = np.ones(args.num_users) * -1
best_net_list = copy.deepcopy(net_local_list)
lr = args.lr
results = []
m = max(int(args.frac * args.num_users), 1)
I = torch.ones((m, m))
i = torch.ones((m, 1))
omega = I - 1 / m * i.mm(i.T)
omega = omega ** 2
omega = omega.cuda()
W = [net_local_list[0].state_dict()[key].flatten() for key in w_glob_keys]
W = torch.cat(W)
d = len(W)
del W
for iter in range(args.epochs):
w_glob = {}
loss_locals = []
m = max(int(args.frac * args.num_users), 1)
idxs_users = np.random.choice(range(args.num_users), m, replace=False)
W = torch.zeros((d, m)).cuda()
for idx, user in enumerate(idxs_users):
W_local = [net_local_list[user].state_dict()[key].flatten() for key in w_glob_keys]
W_local = torch.cat(W_local)
W[:, idx] = W_local
for idx, user in enumerate(idxs_users):
local = LocalUpdateMTL(args=args, dataset=dataset_train, idxs=dict_users_train[user])
net_local = net_local_list[user]
w_local, loss = local.train(net=net_local.to(args.device), lr=lr,
omega=omega, W_glob=W.clone(), idx=idx, w_glob_keys=w_glob_keys)
loss_locals.append(copy.deepcopy(loss))
loss_avg = sum(loss_locals) / len(loss_locals)
loss_train.append(loss_avg)
# eval
acc_test_local, loss_test_local = test_img_local_all(net_local_list, args, dataset_test, dict_users_test, return_all=True)
for user in range(args.num_users):
if acc_test_local[user] > best_acc[user]:
best_acc[user] = acc_test_local[user]
best_net_list[user] = copy.deepcopy(net_local_list[user])
model_save_path = os.path.join(base_save_dir, 'model_user{}.pt'.format(user))
torch.save(best_net_list[user].state_dict(), model_save_path)
acc_test_local, loss_test_local = test_img_local_all(best_net_list, args, dataset_test, dict_users_test)
acc_test_avg, loss_test_avg = test_img_avg_all(net_glob, best_net_list, args, dataset_test)
print('Round {:3d}, Avg Loss {:.3f}, Loss (local): {:.3f}, Acc (local): {:.2f}, Loss (avg): {:.3}, Acc (avg): {:.2f}'.format(
iter, loss_avg, loss_test_local, acc_test_local, loss_test_avg, acc_test_avg))
results.append(np.array([iter, acc_test_local, acc_test_avg, best_acc.mean(), None, None]))
final_results = np.array(results)
final_results = pd.DataFrame(final_results, columns=['epoch', 'acc_test_local', 'acc_test_avg', 'best_acc_local', 'acc_test_ens_avg', 'acc_test_ens_maj'])
final_results.to_csv(results_save_path, index=False)
acc_test_ens_avg, loss_test, acc_test_ens_maj = test_img_ensemble_all(best_net_list, args, dataset_test)
print('Best model, acc (local): {}, acc (ens,avg): {}, acc (ens,maj): {}'.format(best_acc, acc_test_ens_avg, acc_test_ens_maj))
results.append(np.array(['Final', None, None, best_acc.mean(), acc_test_ens_avg, acc_test_ens_maj]))
final_results = np.array(results)
final_results = pd.DataFrame(final_results,
columns=['epoch', 'acc_test_local', 'acc_test_avg', 'best_acc_local', 'acc_test_ens_avg', 'acc_test_ens_maj'])
final_results.to_csv(results_save_path, index=False)