-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathplot_synthetic_data.py
199 lines (169 loc) · 5.48 KB
/
plot_synthetic_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
np.random.seed(123)
import matplotlib.pyplot as plt
d = 20
trainN = 2000
testN = 1000
M = 100
def gen_data(sigma, rho):
v = np.random.random((d,))
mean = np.zeros((d,))
cov = rho**2 * np.eye(d)
all_data = []
for m in range(M):
r_m = np.random.multivariate_normal(mean, cov)
u_m = v + r_m
x_m = np.random.uniform(-1.0, 1.0, (trainN+testN,d))
y_m = np.dot(x_m, u_m) + np.random.normal(0, sigma**2, (trainN+testN,))
train_x_m = x_m[:trainN]
train_y_m = y_m[:trainN]
test_x_m = x_m[trainN:]
test_y_m = y_m[trainN:]
#print (train_x_m)[:10]
#print (train_y_m)[:10]
#print (test_x_m)[:10]
#print (test_y_m)[:10]
#assert False
all_data.append((train_x_m, train_y_m, test_x_m, test_y_m))
return all_data
def local_model(all_data):
train_errors = []
test_errors = []
for (train_x_m, train_y_m, test_x_m, test_y_m) in all_data:
u_m_hat1 = np.linalg.inv(np.dot(np.transpose(train_x_m), train_x_m))
u_m_hat2 = np.dot(np.transpose(train_x_m), train_y_m)
u_m_hat = np.dot(u_m_hat1, u_m_hat2)
train_pred = np.dot(train_x_m, u_m_hat)
test_pred = np.dot(test_x_m, u_m_hat)
train_error = np.mean((train_pred - train_y_m)**2)
test_error = np.mean((test_pred - test_y_m)**2)
#print (train_pred)[:10]
#print (train_y_m)[:10]
#print (test_pred)[:10]
#print (test_y_m)[:10]
#assert False
train_errors.append(train_error)
test_errors.append(test_error)
return np.mean(train_errors), np.mean(test_errors)
def global_model(all_data):
all_train_x = []
all_train_y = []
all_test_x = []
all_test_y = []
for (train_x_m, train_y_m, test_x_m, test_y_m) in all_data:
all_train_x.append(train_x_m)
all_train_y.append(train_y_m)
all_test_x.append(test_x_m)
all_test_y.append(test_y_m)
all_train_x = np.concatenate(all_train_x, axis=0)
all_train_y = np.concatenate(all_train_y, axis=0)
all_test_x = np.concatenate(all_test_x, axis=0)
all_test_y = np.concatenate(all_test_y, axis=0)
v_hat1 = np.linalg.inv(np.dot(np.transpose(all_train_x), all_train_x))
v_hat2 = np.dot(np.transpose(all_train_x), all_train_y)
v_hat = np.dot(v_hat1, v_hat2)
train_pred = np.dot(all_train_x, v_hat)
test_pred = np.dot(all_test_x, v_hat)
train_error = np.mean((train_pred - all_train_y)**2)
test_error = np.mean((test_pred - all_test_y)**2)
return train_error, test_error
def local_global(all_data, alpha):
all_train_x = []
all_train_y = []
all_test_x = []
all_test_y = []
for (train_x_m, train_y_m, test_x_m, test_y_m) in all_data:
all_train_x.append(train_x_m)
all_train_y.append(train_y_m)
all_test_x.append(test_x_m)
all_test_y.append(test_y_m)
all_train_x = np.concatenate(all_train_x, axis=0)
all_train_y = np.concatenate(all_train_y, axis=0)
all_test_x = np.concatenate(all_test_x, axis=0)
all_test_y = np.concatenate(all_test_y, axis=0)
v_hat1 = np.linalg.inv(np.dot(np.transpose(all_train_x), all_train_x))
v_hat2 = np.dot(np.transpose(all_train_x), all_train_y)
v_hat = np.dot(v_hat1, v_hat2)
train_errors = []
test_errors = []
for (train_x_m, train_y_m, test_x_m, test_y_m) in all_data:
u_m_hat1 = np.linalg.inv(np.dot(np.transpose(train_x_m), train_x_m))
u_m_hat2 = np.dot(np.transpose(train_x_m), train_y_m)
u_m_hat = np.dot(u_m_hat1, u_m_hat2)
ensemble = alpha*u_m_hat + (1.0-alpha)*v_hat
train_pred = np.dot(train_x_m, ensemble)
test_pred = np.dot(test_x_m, ensemble)
train_error = np.mean((train_pred - train_y_m)**2)
test_error = np.mean((test_pred - test_y_m)**2)
train_errors.append(train_error)
test_errors.append(test_error)
return np.mean(train_errors), np.mean(test_errors)
# local better
# rho = 0.1
# sigma = 1.5
# plt.ylim(5.07, 5.14)
# local too good
# rho = 0.5
# sigma = 1.5
# plt.ylim(5.0, 8.0)
# global better
# rho = 0.06
# sigma = 1.5
# plt.ylim(5.06, 5.12)
# global too good
# rho = 0.02
# sigma = 1.5
# plt.ylim(5.04, 5.14)
sigmas = [i/10.0 for i in range(11)]
rhos = [i/10.0 for i in range(11)]
alphas = [i/10.0 for i in range(11)]
ls = []
gs = []
lgs = []
rho = 0.5
sigma = 1.5
all_data = gen_data(sigma, rho)
for alpha in alphas:
local_train_err, local_test_err = local_model(all_data)
global_train_err, global_test_err = global_model(all_data)
lg_train_err, lg_test_err = local_global(all_data, alpha)
ls.append(local_test_err)
gs.append(global_test_err)
lgs.append(lg_test_err)
fig, ax = plt.subplots()
# We change the fontsize of minor ticks label
ax.tick_params(axis='both', which='major', labelsize=20)
ax.tick_params(axis='both', which='minor', labelsize=20)
plt.plot(alphas, ls, label='Local only', linewidth=3.0)
plt.plot(alphas, gs, label='FedAvg', linewidth=3.0)
plt.plot(alphas,lgs, label='LG-FedAvg', linewidth=3.0)
plt.legend(fontsize=20)
#plt.xlabel('\alpha', fontsize=18)
plt.ylim(5.0, 8.0)
#plt.yticks([])
#plt.ylabel('average test error', fontsize=18)
plt.show()
assert False
#for sigma in sigmas:
#for rho in rhos:
for alpha in alphas:
rho = 0.5
sigma = 0.5
all_data = gen_data(sigma, rho)
local_train_err, local_test_err = local_model(all_data)
global_train_err, global_test_err = global_model(all_data)
# alpha1 = (M-1)/float(M) * rho**2 + float(d)/(M*trainN) * sigma**2
# alpha2 = (M-1)/float(M) * rho**2 + float((M+1)*d)/(M*trainN) * sigma**2
# alpha = alpha1 / float(alpha2)
print 'alpha', alpha
lg_train_err, lg_test_err = local_global(all_data, alpha)
print sigma, local_test_err, global_test_err, lg_test_err
ls.append(local_test_err)
gs.append(global_test_err)
lgs.append(lg_test_err)
#assert False
plt.plot(ls, label='l')
plt.plot(gs, label='g')
plt.plot(lgs, label='lg')
plt.legend()
plt.show()